Improving robustness of artificial neural networks model using genetic algorithm
Artificial Neural Networks (ANN) has been widely accepted as process estimators due its ability to capture complex relationships. However, experiences in implementing ANN estimators in research and industry have exposed some weakness that can be detrimental to the overall performance of plant operat...
محفوظ في:
المؤلفون الرئيسيون: | Ahmad, Arshad, Chen, Wah Sit |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Universiti Malaysia Sabah
2003
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/8025/1/ArshadAhmad2003_ImprovingRobustnessOfArtificialNeuralNetworks.pdf http://eprints.utm.my/id/eprint/8025/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Application of artificial neural network genetic algorithm in inferential estimation and control of a distillation column
بواسطة: Chen, Wah Sit
منشور في: (2005) -
Model-based fault detection using hierarchical artificial neural network
بواسطة: Ahmad, Arshad, وآخرون
منشور في: (2001) -
Development of a robust hybrid estimator using partial least squares regression and artificial neural networks.
بواسطة: Ahmad, Arshad, وآخرون
منشور في: (2003) -
Implementing artificial neural networks and genetic algorithms to solve modeling and optimisation of biogas production
بواسطة: Abdul Sahli, Fakharudin, وآخرون
منشور في: (2013) -
Spam detection using hybrid of artificial neural network and genetic algorithm
بواسطة: Arram, Anas W. A.
منشور في: (2013)