Improving robustness of artificial neural networks model using genetic algorithm
Artificial Neural Networks (ANN) has been widely accepted as process estimators due its ability to capture complex relationships. However, experiences in implementing ANN estimators in research and industry have exposed some weakness that can be detrimental to the overall performance of plant operat...
保存先:
主要な著者: | , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Universiti Malaysia Sabah
2003
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/8025/1/ArshadAhmad2003_ImprovingRobustnessOfArtificialNeuralNetworks.pdf http://eprints.utm.my/id/eprint/8025/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
要約: | Artificial Neural Networks (ANN) has been widely accepted as process estimators due its ability to capture complex relationships. However, experiences in implementing ANN estimators in research and industry have exposed some weakness that can be detrimental to the overall performance of plant operations. Among these, the issue of robustness is of particular importance. This paper proposes adaptation of networks weight as means to improve robustness. Comparisons between GA approach and conventional backpropagation in adaptation of weights are in on-line estimation and control of fatty acid composition in a distillation column. Significant improvements were obtained by the adaptive model especially model generalization perspective. |
---|