Dynamic modelling of aerobic granular sludge artificial neural networks

Aerobic Granular Sludge (AGS) technology is a promising development in the field of aerobic wastewater treatment system. Aerobic granulation usually happened in sequencing batch reactors (SBRs) system. Most available models for the system are structurally complex with the nonlinearity and uncertaint...

Full description

Saved in:
Bibliographic Details
Main Authors: Mahmod, N., Wahab, N. A.
Format: Article
Published: Institute of Advanced Engineering and Science 2017
Subjects:
Online Access:http://eprints.utm.my/id/eprint/77068/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021099147&doi=10.11591%2fijece.v7i3.pp1568-1573&partnerID=40&md5=859fc21d0d90a552c63dc549c35be65d
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aerobic Granular Sludge (AGS) technology is a promising development in the field of aerobic wastewater treatment system. Aerobic granulation usually happened in sequencing batch reactors (SBRs) system. Most available models for the system are structurally complex with the nonlinearity and uncertainty of the system makes it hard to predict. A reliable model of AGS is essential in order to provide a tool for predicting its performance. This paper proposes a dynamic neural network approach to predict the dynamic behavior of aerobic granular sludge SBRs. The developed model will be applied to predict the performance of AGS in terms of the removal of Chemical Oxygen Demand (COD). The simulation uses the experimental data obtained from the sequencing batch reactor under three different conditions of temperature (30°C, 40°C and 50°C). The overall results indicated that the dynamic of aerobic granular sludge SBR can be successfully estimated using dynamic neural network model, particularly at high temperature.