A sparse partial least squares algorithm based on sure independence screening method
Partial least squares (PLS) regression is a dimension reduction method used in many areas of scientific discoveries. However, it has been shown that the consistency property of the PLS algorithm does not extend to cases with very large number of variables p and small number of samples n (i.e., p>...
保存先:
主要な著者: | , , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Elsevier B.V.
2017
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/75907/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030102045&doi=10.1016%2fj.chemolab.2017.09.011&partnerID=40&md5=750cd790f05fd955b23f17f42610d5ef |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
このレコードへの初めてのコメントを付けませんか!