A sparse partial least squares algorithm based on sure independence screening method
Partial least squares (PLS) regression is a dimension reduction method used in many areas of scientific discoveries. However, it has been shown that the consistency property of the PLS algorithm does not extend to cases with very large number of variables p and small number of samples n (i.e., p>...
Saved in:
Main Authors: | Xu, X., Cheng, K. K., Deng, L., Dong, J. |
---|---|
格式: | Article |
出版: |
Elsevier B.V.
2017
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/75907/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030102045&doi=10.1016%2fj.chemolab.2017.09.011&partnerID=40&md5=750cd790f05fd955b23f17f42610d5ef |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Sparse PLS-based method for overlapping metabolite set enrichment analysis
由: Deng, L., et al.
出版: (2021) -
Identifying significant metabolic pathways using multi-block partial least-squares analysis
由: Deng, Lingli, et al.
出版: (2020) -
Handling multicollinearity problems using partial least squares regression
由: Sagadavan, Revathi
出版: (2012) -
Constructing partial least squares model in the presence of missing data
由: Mohd Jamil, Jastini, et al.
出版: (2015) -
The effect of partially fix in least square / Mohamad Amirul Rozali
由: Rozali, Mohamad Amirul
出版: (2021)