Geospeciation of arsenic using MINTEQA2 for a post-mining lake
The objective of this study was to investigate the cycling of arsenic in the water column of a post-mining lake. This study is part of a research project to develop health risk assessment for the surrounding population. Inductively Coupled Plasma-Mass Spectrophotometer (ICP-MS) and Capillary Electro...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IWA Publishing
2006
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/7502/1/Zaini_B_Ujang_2006_Geospeciation_Of_Arsenic_Using_MINTEQA2.pdf http://eprints.utm.my/id/eprint/7502/ http://dx.doi.org/10.2166/wst.2006.894 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.7502 |
---|---|
record_format |
eprints |
spelling |
my.utm.75022010-06-01T15:52:55Z http://eprints.utm.my/id/eprint/7502/ Geospeciation of arsenic using MINTEQA2 for a post-mining lake Sari, S. A. Ujang, Zaini Ahmad, U. K. Q Science (General) The objective of this study was to investigate the cycling of arsenic in the water column of a post-mining lake. This study is part of a research project to develop health risk assessment for the surrounding population. Inductively Coupled Plasma-Mass Spectrophotometer (ICP-MS) and Capillary Electrophoresis (CE) have been used to analyze the total amount and speciation, respectively. A computer program, called MINTEQA2, which was developed by the United States Environmental Protection Agency (USEPA) was used for predicting arsenic, iron, and manganese as functions of pH and solubility. Studying the pH values and cycle of arsenic shows that the percentage of bound arsenate, As(V) species in the form of HAsO-4 increases with range pH from 5 to 7, as well as Fe(ll) and Mn(ll). As expected phases of arsenic oxides are FeAsO4 and Mn3(AsO4), as a function of solubility, however none of these phases are over saturated and not precipitated. It means that the phases of arsenic oxides have a high solubility. IWA Publishing 2006 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/7502/1/Zaini_B_Ujang_2006_Geospeciation_Of_Arsenic_Using_MINTEQA2.pdf Sari, S. A. and Ujang, Zaini and Ahmad, U. K. (2006) Geospeciation of arsenic using MINTEQA2 for a post-mining lake. Water Science and Technology , 54 (11-12). pp. 289-299. ISSN 1606-9749 http://dx.doi.org/10.2166/wst.2006.894 10.2166/wst.2006.894 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
Q Science (General) |
spellingShingle |
Q Science (General) Sari, S. A. Ujang, Zaini Ahmad, U. K. Geospeciation of arsenic using MINTEQA2 for a post-mining lake |
description |
The objective of this study was to investigate the cycling of arsenic in the water column of a post-mining lake. This study is part of a research project to develop health risk assessment for the surrounding population. Inductively Coupled Plasma-Mass Spectrophotometer (ICP-MS) and Capillary Electrophoresis (CE) have been used to analyze the total amount and speciation, respectively. A computer program, called MINTEQA2, which was developed by the United States Environmental Protection Agency (USEPA) was used for predicting arsenic, iron, and manganese as functions of pH and solubility. Studying the pH values and cycle of arsenic shows that the percentage of bound arsenate, As(V) species in the form of HAsO-4 increases with range pH from 5 to 7, as well as Fe(ll) and Mn(ll). As expected phases of arsenic oxides are FeAsO4 and Mn3(AsO4), as a function of solubility, however none of these phases are over saturated and not precipitated. It means that the phases of arsenic oxides have a high solubility. |
format |
Article |
author |
Sari, S. A. Ujang, Zaini Ahmad, U. K. |
author_facet |
Sari, S. A. Ujang, Zaini Ahmad, U. K. |
author_sort |
Sari, S. A. |
title |
Geospeciation of arsenic using MINTEQA2 for a post-mining lake |
title_short |
Geospeciation of arsenic using MINTEQA2 for a post-mining lake |
title_full |
Geospeciation of arsenic using MINTEQA2 for a post-mining lake |
title_fullStr |
Geospeciation of arsenic using MINTEQA2 for a post-mining lake |
title_full_unstemmed |
Geospeciation of arsenic using MINTEQA2 for a post-mining lake |
title_sort |
geospeciation of arsenic using minteqa2 for a post-mining lake |
publisher |
IWA Publishing |
publishDate |
2006 |
url |
http://eprints.utm.my/id/eprint/7502/1/Zaini_B_Ujang_2006_Geospeciation_Of_Arsenic_Using_MINTEQA2.pdf http://eprints.utm.my/id/eprint/7502/ http://dx.doi.org/10.2166/wst.2006.894 |
_version_ |
1643644785377935360 |
score |
13.211869 |