The effect of different methods of simulating wave induced water particle kinematics on the 100-year responses

Linear random wave theory (LRWT) is frequently used to simulate water particle kinematics at different nodes of an offshore structure from a reference surface elevation record. However, it is well known that LRWT leads to water particle kinematics with exaggerated high-frequency components in the vi...

Full description

Saved in:
Bibliographic Details
Main Authors: Abu Husain, M. K., Mohd. Zaki, N. I., Najafian, G.
Format: Conference or Workshop Item
Published: International Society of Offshore and Polar Engineers 2016
Subjects:
Online Access:http://eprints.utm.my/id/eprint/73653/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84997755151&partnerID=40&md5=e5b788ccfe7c14cd79f5aceadb0c8af3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Linear random wave theory (LRWT) is frequently used to simulate water particle kinematics at different nodes of an offshore structure from a reference surface elevation record. However, it is well known that LRWT leads to water particle kinematics with exaggerated high-frequency components in the vicinity of mean water level (MWL). To avoid this problem, empirical techniques such as Wheeler and vertical stretching methods are frequently used to provide a more realistic representation of the wave kinematics in the near surface zone. Previous investigation shows that these two different methods of simulating water particle kinematics on the probability distribution of extreme responses could be significant leading to uncertainty as to which method should be used. Modified version of LRWT; effective node elevation and effective water depth methods are introduced which would significantly reduce the computational effort for evaluation of water particle kinematics in the near surface zone. While the offshore industry recognizes that different methods of simulating water particle kinematics lead to different responses, no systematic investigation has been conducted to investigate the effect of this on the probability distribution of the extreme responses. Thus, in this paper, the more efficient time simulation (ETS) method has been used to compare the magnitude of the 100-year responses derived from different methods. First, these methods and their differences are reviewed. Then, the ETS method will be used to calculate the 100-year responses from different methods are compared and the design implications will be commented on.