Mocum code verification and sensibility study using C5G7 benchmark
This work uses the 2-D C5G7 benchmark to verify the accuracy of the MOCUM code, a parallel neutronics program based on the method of characteristics (MOC) for solving arbitrary core geometry. Compared to the MCNP results, MOCUM k-eff, maximum assembly and pin power percentage errors are 0.02%, -0.06...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
American Society of Mechanical Engineers (ASME)
2016
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/73502/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995783970&doi=10.1115%2fICONE24-60443&partnerID=40&md5=5ce7910471e76ddd121d1657ee2a3cb7 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.73502 |
---|---|
record_format |
eprints |
spelling |
my.utm.735022017-11-20T08:43:00Z http://eprints.utm.my/id/eprint/73502/ Mocum code verification and sensibility study using C5G7 benchmark Yang, X. Borse, R. Satvat, N. TP Chemical technology This work uses the 2-D C5G7 benchmark to verify the accuracy of the MOCUM code, a parallel neutronics program based on the method of characteristics (MOC) for solving arbitrary core geometry. Compared to the MCNP results, MOCUM k-eff, maximum assembly and pin power percentage errors are 0.02%, -0.06%, and 0.64%, respectively. The results demonstrate the high accuracy of the MOCUM code. The calculation uses a total of 56 threads, and the runtime on dual Intel Xeon E5-2699 v3 CPUs is 26 minutes, with speed up higher than 50 times. The sensitivity study of various MOC parameters using the calculation of the C5G7 benchmark problem is also performed. The study reveals that C5G7 requires the usage of 48 or more azimuthal angles. The strong flux gradient and the heterogeneous effects need fine unstructured meshes to resolve. The simulation uses 258 million zones with an average mesh size of 0.016 cm2. The investigation of the polar angle quadrature indicates that Leonard polar angle performs slightly better than Gauss-Legendre and Tabuchi polar angles and more than three polar angles are not necessary. In addition, parameter sensitivity study shows that coarse parameters are prone to introduce error to the neutron flux but not k-eff. American Society of Mechanical Engineers (ASME) 2016 Conference or Workshop Item PeerReviewed Yang, X. and Borse, R. and Satvat, N. (2016) Mocum code verification and sensibility study using C5G7 benchmark. In: 2016 24th International Conference on Nuclear Engineering, ICONE 2016, 26 - 30 June 2016, Charlotte, United States. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995783970&doi=10.1115%2fICONE24-60443&partnerID=40&md5=5ce7910471e76ddd121d1657ee2a3cb7 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology Yang, X. Borse, R. Satvat, N. Mocum code verification and sensibility study using C5G7 benchmark |
description |
This work uses the 2-D C5G7 benchmark to verify the accuracy of the MOCUM code, a parallel neutronics program based on the method of characteristics (MOC) for solving arbitrary core geometry. Compared to the MCNP results, MOCUM k-eff, maximum assembly and pin power percentage errors are 0.02%, -0.06%, and 0.64%, respectively. The results demonstrate the high accuracy of the MOCUM code. The calculation uses a total of 56 threads, and the runtime on dual Intel Xeon E5-2699 v3 CPUs is 26 minutes, with speed up higher than 50 times. The sensitivity study of various MOC parameters using the calculation of the C5G7 benchmark problem is also performed. The study reveals that C5G7 requires the usage of 48 or more azimuthal angles. The strong flux gradient and the heterogeneous effects need fine unstructured meshes to resolve. The simulation uses 258 million zones with an average mesh size of 0.016 cm2. The investigation of the polar angle quadrature indicates that Leonard polar angle performs slightly better than Gauss-Legendre and Tabuchi polar angles and more than three polar angles are not necessary. In addition, parameter sensitivity study shows that coarse parameters are prone to introduce error to the neutron flux but not k-eff. |
format |
Conference or Workshop Item |
author |
Yang, X. Borse, R. Satvat, N. |
author_facet |
Yang, X. Borse, R. Satvat, N. |
author_sort |
Yang, X. |
title |
Mocum code verification and sensibility study using C5G7 benchmark |
title_short |
Mocum code verification and sensibility study using C5G7 benchmark |
title_full |
Mocum code verification and sensibility study using C5G7 benchmark |
title_fullStr |
Mocum code verification and sensibility study using C5G7 benchmark |
title_full_unstemmed |
Mocum code verification and sensibility study using C5G7 benchmark |
title_sort |
mocum code verification and sensibility study using c5g7 benchmark |
publisher |
American Society of Mechanical Engineers (ASME) |
publishDate |
2016 |
url |
http://eprints.utm.my/id/eprint/73502/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995783970&doi=10.1115%2fICONE24-60443&partnerID=40&md5=5ce7910471e76ddd121d1657ee2a3cb7 |
_version_ |
1643656677852971008 |
score |
13.211869 |