Intelligent multi-objective classifier for breast cancer diagnosis based on multilayer perceptron neural network and differential evolution

Diagnosis of breast cancer disease depends on human experience. It is time consuming and has an element of human error in the results. This paper presents an intelligent multi-objective classifier to Diagnose breast cancer diseases using multilayer perceptron (MLP) neural network with Differential E...

Full description

Saved in:
Bibliographic Details
Main Authors: Ibrahim, A. O., Shamsuddin, S. M., Saleh, A. Y., Abdelmaboud, A., Ali, A.
Format: Conference or Workshop Item
Published: Institute of Electrical and Electronics Engineers Inc. 2016
Subjects:
Online Access:http://eprints.utm.my/id/eprint/73470/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84965148270&doi=10.1109%2fICCNEEE.2015.7381405&partnerID=40&md5=9ae1cb253a73c366f300951262d84afd
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diagnosis of breast cancer disease depends on human experience. It is time consuming and has an element of human error in the results. This paper presents an intelligent multi-objective classifier to Diagnose breast cancer diseases using multilayer perceptron (MLP) neural network with Differential Evolution technique. The Differential Evolution (DE) algorithm is used to solve multi-objective optimization problems by tuning MLP neural network parameters. The proposed intelligent multi-objective classifier is used for diagnosis of breast cancer disease. In addition, it utilizes the advantages of multi-objective differential evolution to optimize the number of hidden nodes in the hidden layer of the MLP neural network and also to reduce network error rate. The results indicate that the proposed intelligent multi-objective classifier is viable in breast cancer diagnosis.