Theoretical investigations of β-tricalcium
Beta-tri-calcium phosphate (β-TCP) materials have gained a great deal of research considerations in biomaterial area due to their excellent biocompatibility and identical chemical compositions to the natural teeth and bones. Therefore, the β-TCP compound can be used as coatings, cement and composite...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit UTM Press
2016
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/71354/2/M.A.Saeed2016_Theoreticalinvestigationsof.pdf http://eprints.utm.my/id/eprint/71354/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962591729&doi=10.11113%2fjt.v78.7836&partnerID=40&md5=16a5922c8ccb1acdd080dfa9f47708e5 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Beta-tri-calcium phosphate (β-TCP) materials have gained a great deal of research considerations in biomaterial area due to their excellent biocompatibility and identical chemical compositions to the natural teeth and bones. Therefore, the β-TCP compound can be used as coatings, cement and composites as well as biocompatible ceramics for medical and dental applications. Electronic and optical properties for β-TCP compound have been investigated using density functional theory (DFT). For the calculations, we used full potential linear augmented plane wave method (FPLAPW), within three types of approximations along with local density approximations (LDA), generalized gradient approximations (GGA) and Modified Becke-Johnson (mBJ) to get the effect of the exchange and correlation in our calculations to get an accurate results. The computed band gap values for (β-TCP) compound using LDA, GGA, and mBJ-GGA approximations are 5.5 eV, 5.9 eV and 6.8 eV respectively. This is also predicted that the chemical bonding in this compound is a kind of combination of covalent and ionic character that is in a line with the experimental findings. The optical parameter, static dielectric constant ε1(0) reaches the values of 3.23681 (eV) at 0 GPa for the β-TCP compound. The obtained results are of vital nature for rising the quality of the electronic and optical properties of this material, and provide more evidence to fabricate novel Beta-Tri-calcium phosphate biomaterials for medical and dental applications. |
---|