Exchange rate forecasting using modified empirical mode decomposition and least squares support vector machine
Forecasting exchange rate requires a model that can capture the non-stationary and non-linearity of the exchange rate data. In this paper, empirical mode decomposition (EMD) is combines with least squares support vector machine (LSSVM) model in order to forecast daily USD/TWD exchange rate. EMD is u...
保存先:
主要な著者: | Abdul Rashid, Nur Izzati, Samsudin, Ruhaidah, Shabri, Ani |
---|---|
フォーマット: | 論文 |
出版事項: |
International Center for Scientific Research and Studies
2016
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/71230/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010427055&partnerID=40&md5=631643f0150ef2ece9a4bf0e24623da6 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Empirical mode decomposition-least squares support vector machine based for water demand forecasting
著者:: Shabri, Ani, 等
出版事項: (2015) -
Tourism forecasting using hybrid modified empirical mode decomposition and neural network
著者:: Yahya, Nurhaziyatul Adawiyah, 等
出版事項: (2017) -
Hybridizing GMDH and least squares SVM support vector machine for forecasting tourism demand
著者:: Samsudin, Ruhaidah, 等
出版事項: (2010) -
A hybrid GMDH and least squares support vector machines in time series forecasting
著者:: Samsudin, Ruhaidah, 等
出版事項: (2011) -
A hybrid least squares support vector machines and GMDH approach for river flow forecasting
著者:: Samsudin, Ruhaidah, 等
出版事項: (2010)