Robust weighted least squares estimation of regression parameter in the presence of outliers and heteroscedastic errors
In a linear regression model, the ordinary least squares (OLS) method is considered the best method to estimate the regression parameters if the assumptions are met. However, if the data does not satisfy the underlying assumptions, the results will be misleading. The violation for the assumption of...
保存先:
主要な著者: | Adnan, Robiah, Saffari, Seyed Ehsan, Pati, Kafi Dano, Rasheed, Abdulkadir Bello |
---|---|
フォーマット: | 論文 |
出版事項: |
Penerbit UTM Press
2014
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/62501/ http://dx.doi.org/10.11113/jt.v71.3609 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Performance of robust wild bootstrap estimation of linear model in the presence of outlier and heteroscedasticity errors
著者:: Rasheed, Abdulkadir Bello, 等
出版事項: (2015) -
Robust PC with wild bootstrap estimation of linear model in the presence of outliers, multicollinearity and heteroscedasticity error variance
著者:: Rasheed, Abdulkadir Bello, 等
出版事項: (2015) -
Handling multicollinearity and outliers using weighted ridge least trimmed squares
著者:: Pati, Kafi Dano, 等
出版事項: (2014) -
The performance of robust weighted least squares in the presence of outliers and heteroscedastic errors
著者:: Midi, Habshah, 等
出版事項: (2009) -
Using ridge least median squares to estimate the parameter by solving multicollinearity and outliers problems
著者:: Pati, Kafi Dano, 等
出版事項: (2015)