Hidden features extraction using Independent Component Analysis for improved alert clustering

Feature extraction plays an important role in reducing the computational complexity and increasing the accuracy. Independent Component Analysis (ICA) is an effective feature extraction technique for disclosing hidden factors that underlying mixed samples of random variable measurements. The computat...

詳細記述

保存先:
書誌詳細
主要な著者: Alhaj, T. A., Zainal, A., Siraj, M. M.
フォーマット: Conference or Workshop Item
出版事項: 2015
主題:
オンライン・アクセス:http://eprints.utm.my/id/eprint/59297/
http://dx.doi.org/10.1109/I4CT.2015.7219631
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料