Hidden features extraction using Independent Component Analysis for improved alert clustering
Feature extraction plays an important role in reducing the computational complexity and increasing the accuracy. Independent Component Analysis (ICA) is an effective feature extraction technique for disclosing hidden factors that underlying mixed samples of random variable measurements. The computat...
保存先:
主要な著者: | Alhaj, T. A., Zainal, A., Siraj, M. M. |
---|---|
フォーマット: | Conference or Workshop Item |
出版事項: |
2015
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/59297/ http://dx.doi.org/10.1109/I4CT.2015.7219631 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Feature selection using information gain for improved structural-based alert correlation
著者:: Alhaj, T. A., 等
出版事項: (2016) -
Intelligent alert clustering model for network intrusion analysis
著者:: Md. Siraj, Maheyzah, 等
出版事項: (2009) -
Intelligent clustering with PCA and unsupervised learning algorithm in intrusion alert correlation
著者:: Md. Siraj, Maheyzah, 等
出版事項: (2009) -
A taxonomy on intrusion alert aggregation techniques
著者:: Ahmed, T., 等
出版事項: (2015) -
Integration of PSO and K-means clustering algorithm for structural-based alert correlation model
著者:: Ho, Hazelyn Wern Hua, 等
出版事項: (2017)