A numerical study on MM-NEMO scheme: Impact of rising number of mobile routers and cell residence time
Signaling overhead is a significant issue for mobile network due to increase traffic load with packet loss and delay during frequent movement of Mobile Router (MR) from one subnet to another in Network Mobility Basic Support protocol (NEMO BSP). Accordingly, advance preparation mechanism (i.e. Fast...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2015
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/59113/ http://dx.doi.org/10.1007/978-3-319-17269-9_9 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.59113 |
---|---|
record_format |
eprints |
spelling |
my.utm.591132022-04-10T05:21:47Z http://eprints.utm.my/id/eprint/59113/ A numerical study on MM-NEMO scheme: Impact of rising number of mobile routers and cell residence time Islam, S. Hashim, A. H. A. Habaebi, M. H. Hassan, W. H. Latif, S. A. Hasan, M. K. Ramli, H. A. M. QA75 Electronic computers. Computer science Signaling overhead is a significant issue for mobile network due to increase traffic load with packet loss and delay during frequent movement of Mobile Router (MR) from one subnet to another in Network Mobility Basic Support protocol (NEMO BSP). Accordingly, advance preparation mechanism (i.e. Fast Hierarchical Mobile IPv6) works very well as a node mobility solution in order to solve these matters. Yet, combining this host-based protocol for macro mobility handoff in NEMO environment is a challenging issue as both MR and its Mobile Network Nodes (MNNs) must be taken into consideration. In this paper, a numerical framework is developed to study the total handoff cost of Macro Mobility scheme in NEMO (MM-NEMO). The numerical results confirms that MM-NEMO scheme outperforms the standard NEMO BSP related to total handoff delay cost (51 % less than that of NEMO-BSP) regardless of increasing the number of MRs as well as cell residence time. 2015 Conference or Workshop Item PeerReviewed Islam, S. and Hashim, A. H. A. and Habaebi, M. H. and Hassan, W. H. and Latif, S. A. and Hasan, M. K. and Ramli, H. A. M. (2015) A numerical study on MM-NEMO scheme: Impact of rising number of mobile routers and cell residence time. In: 1st Applied Electromagnetic International Conference, APPEIC 2014, 16 - 18 December 2014, Bandung, Indonesia. http://dx.doi.org/10.1007/978-3-319-17269-9_9 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
QA75 Electronic computers. Computer science |
spellingShingle |
QA75 Electronic computers. Computer science Islam, S. Hashim, A. H. A. Habaebi, M. H. Hassan, W. H. Latif, S. A. Hasan, M. K. Ramli, H. A. M. A numerical study on MM-NEMO scheme: Impact of rising number of mobile routers and cell residence time |
description |
Signaling overhead is a significant issue for mobile network due to increase traffic load with packet loss and delay during frequent movement of Mobile Router (MR) from one subnet to another in Network Mobility Basic Support protocol (NEMO BSP). Accordingly, advance preparation mechanism (i.e. Fast Hierarchical Mobile IPv6) works very well as a node mobility solution in order to solve these matters. Yet, combining this host-based protocol for macro mobility handoff in NEMO environment is a challenging issue as both MR and its Mobile Network Nodes (MNNs) must be taken into consideration. In this paper, a numerical framework is developed to study the total handoff cost of Macro Mobility scheme in NEMO (MM-NEMO). The numerical results confirms that MM-NEMO scheme outperforms the standard NEMO BSP related to total handoff delay cost (51 % less than that of NEMO-BSP) regardless of increasing the number of MRs as well as cell residence time. |
format |
Conference or Workshop Item |
author |
Islam, S. Hashim, A. H. A. Habaebi, M. H. Hassan, W. H. Latif, S. A. Hasan, M. K. Ramli, H. A. M. |
author_facet |
Islam, S. Hashim, A. H. A. Habaebi, M. H. Hassan, W. H. Latif, S. A. Hasan, M. K. Ramli, H. A. M. |
author_sort |
Islam, S. |
title |
A numerical study on MM-NEMO scheme: Impact of rising number of mobile routers and cell residence time |
title_short |
A numerical study on MM-NEMO scheme: Impact of rising number of mobile routers and cell residence time |
title_full |
A numerical study on MM-NEMO scheme: Impact of rising number of mobile routers and cell residence time |
title_fullStr |
A numerical study on MM-NEMO scheme: Impact of rising number of mobile routers and cell residence time |
title_full_unstemmed |
A numerical study on MM-NEMO scheme: Impact of rising number of mobile routers and cell residence time |
title_sort |
numerical study on mm-nemo scheme: impact of rising number of mobile routers and cell residence time |
publishDate |
2015 |
url |
http://eprints.utm.my/id/eprint/59113/ http://dx.doi.org/10.1007/978-3-319-17269-9_9 |
_version_ |
1731225559274356736 |
score |
13.211869 |