The synergistic combination of particle swarm optimization and fuzzy sets to design granular classifier
Granulation extracts a bundle of similar patterns by decomposing universe. Hyperboxes are granular classifiers to confront the uncertainties in granular computing. This paper proposes a granular classifier to discover hyperboxes in three phases. The first phase of the proposed model uses the set cal...
保存先:
主要な著者: | Salehi, Saber, Selamat, Ali, Mashinchi, M. Reza, Fujita, Hamido |
---|---|
フォーマット: | 論文 |
出版事項: |
Elsevier
2015
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/58999/ http://dx.doi.org/10.1016/j.knosys.2014.12.017 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Granular-rule extraction to simplify data
著者:: Mashinchi, R., 等
出版事項: (2015) -
Adaptive multi-granularity sparse subspace clustering.
著者:: Deng, Tingquan, 等
出版事項: (2023) -
Evaluating extant uranium: Linguistic reasoning by fuzzy artificial neural networks
著者:: Mashinchi, M. R., 等
出版事項: (2015) -
Hybridized feature set for accurate Arabic dark web pages classification
著者:: Sabbah, T., 等
出版事項: (2015) -
Opcodes histogram for classifying metamorphic portable executables malware
著者:: Masrom, Maslin, 等
出版事項: (2012)