The synergistic combination of particle swarm optimization and fuzzy sets to design granular classifier
Granulation extracts a bundle of similar patterns by decomposing universe. Hyperboxes are granular classifiers to confront the uncertainties in granular computing. This paper proposes a granular classifier to discover hyperboxes in three phases. The first phase of the proposed model uses the set cal...
Saved in:
Main Authors: | Salehi, Saber, Selamat, Ali, Mashinchi, M. Reza, Fujita, Hamido |
---|---|
格式: | Article |
出版: |
Elsevier
2015
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/58999/ http://dx.doi.org/10.1016/j.knosys.2014.12.017 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Granular-rule extraction to simplify data
由: Mashinchi, R., et al.
出版: (2015) -
Adaptive multi-granularity sparse subspace clustering.
由: Deng, Tingquan, et al.
出版: (2023) -
Evaluating extant uranium: Linguistic reasoning by fuzzy artificial neural networks
由: Mashinchi, M. R., et al.
出版: (2015) -
Hybridized feature set for accurate Arabic dark web pages classification
由: Sabbah, T., et al.
出版: (2015) -
Opcodes histogram for classifying metamorphic portable executables malware
由: Masrom, Maslin, et al.
出版: (2012)