Parameter estimation using improved differential evolution and bacterial foraging algorithms to model tyrosine production in mus Musculus(mouse)
The hybrid of Differential Evolution algorithm with Kalman Filtering and Bacterial Foraging algorithm is a novel global optimisation method implemented to obtain the best kinetic parameter value. The proposed algorithm is then used to model tyrosine production in Musmusculus (mouse) by using a datas...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit UTM Press
2015
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/58751/1/MohdSaberi2015_ParameterEstimationUsingImprovedDifferential.pdf http://eprints.utm.my/id/eprint/58751/ http://dx.doi.org/10.11113/jt.v72.1778 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.58751 |
---|---|
record_format |
eprints |
spelling |
my.utm.587512021-12-15T01:11:54Z http://eprints.utm.my/id/eprint/58751/ Parameter estimation using improved differential evolution and bacterial foraging algorithms to model tyrosine production in mus Musculus(mouse) Yeoh, Jia Xing Chong, Chuii Khim Mohamad, Mohd. Saberi Choon, Yee Wen Chai, Lian En Deris, Safaai Ibrahim, Zuwairie QA75 Electronic computers. Computer science The hybrid of Differential Evolution algorithm with Kalman Filtering and Bacterial Foraging algorithm is a novel global optimisation method implemented to obtain the best kinetic parameter value. The proposed algorithm is then used to model tyrosine production in Musmusculus (mouse) by using a dataset, the JAK/STAT(Janus Kinase Signal Transducer and Activator of Transcription) signal transduction pathway. Global optimisation is a method to identify the optimal kinetic parameter in ordinary differential equation. From the ordinary parameter of biomathematical field, there are many unknown parameters, and commonly, the parameter is in nonlinear form. Global optimisation method includes differential evolution algorithm, which will be used in this research. Kalman Filter and Bacterial Foraging algorithm helps in handling noise data and convergences faster respectively in the conventional Differential Evolution. The results from this experiment show estimated optimal kinetic parameters values, shorter computation time, and better accuracy of simulated results compared with other estimation algorithms. Penerbit UTM Press 2015 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/58751/1/MohdSaberi2015_ParameterEstimationUsingImprovedDifferential.pdf Yeoh, Jia Xing and Chong, Chuii Khim and Mohamad, Mohd. Saberi and Choon, Yee Wen and Chai, Lian En and Deris, Safaai and Ibrahim, Zuwairie (2015) Parameter estimation using improved differential evolution and bacterial foraging algorithms to model tyrosine production in mus Musculus(mouse). Jurnal Teknologi, 72 (1). pp. 49-56. ISSN 0127-9696 http://dx.doi.org/10.11113/jt.v72.1778 DOI:10.11113/jt.v72.1778 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
QA75 Electronic computers. Computer science |
spellingShingle |
QA75 Electronic computers. Computer science Yeoh, Jia Xing Chong, Chuii Khim Mohamad, Mohd. Saberi Choon, Yee Wen Chai, Lian En Deris, Safaai Ibrahim, Zuwairie Parameter estimation using improved differential evolution and bacterial foraging algorithms to model tyrosine production in mus Musculus(mouse) |
description |
The hybrid of Differential Evolution algorithm with Kalman Filtering and Bacterial Foraging algorithm is a novel global optimisation method implemented to obtain the best kinetic parameter value. The proposed algorithm is then used to model tyrosine production in Musmusculus (mouse) by using a dataset, the JAK/STAT(Janus Kinase Signal Transducer and Activator of Transcription) signal transduction pathway. Global optimisation is a method to identify the optimal kinetic parameter in ordinary differential equation. From the ordinary parameter of biomathematical field, there are many unknown parameters, and commonly, the parameter is in nonlinear form. Global optimisation method includes differential evolution algorithm, which will be used in this research. Kalman Filter and Bacterial Foraging algorithm helps in handling noise data and convergences faster respectively in the conventional Differential Evolution. The results from this experiment show estimated optimal kinetic parameters values, shorter computation time, and better accuracy of simulated results compared with other estimation algorithms. |
format |
Article |
author |
Yeoh, Jia Xing Chong, Chuii Khim Mohamad, Mohd. Saberi Choon, Yee Wen Chai, Lian En Deris, Safaai Ibrahim, Zuwairie |
author_facet |
Yeoh, Jia Xing Chong, Chuii Khim Mohamad, Mohd. Saberi Choon, Yee Wen Chai, Lian En Deris, Safaai Ibrahim, Zuwairie |
author_sort |
Yeoh, Jia Xing |
title |
Parameter estimation using improved differential evolution and bacterial foraging algorithms to model tyrosine production in mus Musculus(mouse) |
title_short |
Parameter estimation using improved differential evolution and bacterial foraging algorithms to model tyrosine production in mus Musculus(mouse) |
title_full |
Parameter estimation using improved differential evolution and bacterial foraging algorithms to model tyrosine production in mus Musculus(mouse) |
title_fullStr |
Parameter estimation using improved differential evolution and bacterial foraging algorithms to model tyrosine production in mus Musculus(mouse) |
title_full_unstemmed |
Parameter estimation using improved differential evolution and bacterial foraging algorithms to model tyrosine production in mus Musculus(mouse) |
title_sort |
parameter estimation using improved differential evolution and bacterial foraging algorithms to model tyrosine production in mus musculus(mouse) |
publisher |
Penerbit UTM Press |
publishDate |
2015 |
url |
http://eprints.utm.my/id/eprint/58751/1/MohdSaberi2015_ParameterEstimationUsingImprovedDifferential.pdf http://eprints.utm.my/id/eprint/58751/ http://dx.doi.org/10.11113/jt.v72.1778 |
_version_ |
1720436888481824768 |
score |
13.211869 |