Optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by Box-Behnken design

Naphthenic acid (NA) removal from petroleum crude oil was investigated and optimized through the utilization of a formulated basic chemical and a basic catalyst. The response surface method (RSM) by Box-Behnken design (BBD) was employed for this purpose. Ammoniated polyethylene glycol (NH3-PEG) and...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd. Shukri, Nurasmat, Jaafar, Jafariah, W. Abu Bakar, Wan Azelee
Format: Article
Published: Springer Verlag 2015
Subjects:
Online Access:http://eprints.utm.my/id/eprint/58718/
http://dx.doi.org/10.1007/s10098-015-0981-2
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.58718
record_format eprints
spelling my.utm.587182021-08-16T03:45:57Z http://eprints.utm.my/id/eprint/58718/ Optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by Box-Behnken design Mohd. Shukri, Nurasmat Jaafar, Jafariah W. Abu Bakar, Wan Azelee QD Chemistry Naphthenic acid (NA) removal from petroleum crude oil was investigated and optimized through the utilization of a formulated basic chemical and a basic catalyst. The response surface method (RSM) by Box-Behnken design (BBD) was employed for this purpose. Ammoniated polyethylene glycol (NH3-PEG) and cerium oxide supported on alumina were selected as the basic chemical and basic catalyst, respectively. Synthesizing of the catalyst was conducted through the wet impregnation method, and calcination was performed at temperatures of 400, 700, and 1000 °C. Brunauer-Emmett-Teller analysis (BET), field emission scanning electron microscopy-energy dispersive X-ray (FESEM-EDX), and X-ray diffraction analysis (XRD) were employed for characterizing the catalyst. A preliminary study revealed that the finest catalytic activity was achieved with the calcination of the Ce/Al2O3 catalyst at 1000 °C with a NH3-PEG concentration of 1000 mg/L and a percentage of NH3-PEG/oil mass ratio of 0.40. The optimization of the parameters, which comprise catalyst calcination temperature, concentration of NH3-PEG, and the percentage of NH3-PEG/oil mass ratio on the deacidification of NA, was achieved through the utilization of the response surface method (RSM) by BBD. The optimal conditions were realized at a catalyst calcination temperature of 1,050.54 °C, a NH3-PEG concentration of 853.10 mg/L, and a percentage of NH3-PEG/oil mass ratio of 0.47. With a 0.41 % margin of error, the results from RSM were deemed in good agreement with the experimental values. Springer Verlag 2015-06-16 Article PeerReviewed Mohd. Shukri, Nurasmat and Jaafar, Jafariah and W. Abu Bakar, Wan Azelee (2015) Optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by Box-Behnken design. Clean Technologies and Environmental Policy, 17 (8). pp. 2387-2400. ISSN 1618-954X http://dx.doi.org/10.1007/s10098-015-0981-2 DOI:10.1007/s10098-015-0981-2
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic QD Chemistry
spellingShingle QD Chemistry
Mohd. Shukri, Nurasmat
Jaafar, Jafariah
W. Abu Bakar, Wan Azelee
Optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by Box-Behnken design
description Naphthenic acid (NA) removal from petroleum crude oil was investigated and optimized through the utilization of a formulated basic chemical and a basic catalyst. The response surface method (RSM) by Box-Behnken design (BBD) was employed for this purpose. Ammoniated polyethylene glycol (NH3-PEG) and cerium oxide supported on alumina were selected as the basic chemical and basic catalyst, respectively. Synthesizing of the catalyst was conducted through the wet impregnation method, and calcination was performed at temperatures of 400, 700, and 1000 °C. Brunauer-Emmett-Teller analysis (BET), field emission scanning electron microscopy-energy dispersive X-ray (FESEM-EDX), and X-ray diffraction analysis (XRD) were employed for characterizing the catalyst. A preliminary study revealed that the finest catalytic activity was achieved with the calcination of the Ce/Al2O3 catalyst at 1000 °C with a NH3-PEG concentration of 1000 mg/L and a percentage of NH3-PEG/oil mass ratio of 0.40. The optimization of the parameters, which comprise catalyst calcination temperature, concentration of NH3-PEG, and the percentage of NH3-PEG/oil mass ratio on the deacidification of NA, was achieved through the utilization of the response surface method (RSM) by BBD. The optimal conditions were realized at a catalyst calcination temperature of 1,050.54 °C, a NH3-PEG concentration of 853.10 mg/L, and a percentage of NH3-PEG/oil mass ratio of 0.47. With a 0.41 % margin of error, the results from RSM were deemed in good agreement with the experimental values.
format Article
author Mohd. Shukri, Nurasmat
Jaafar, Jafariah
W. Abu Bakar, Wan Azelee
author_facet Mohd. Shukri, Nurasmat
Jaafar, Jafariah
W. Abu Bakar, Wan Azelee
author_sort Mohd. Shukri, Nurasmat
title Optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by Box-Behnken design
title_short Optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by Box-Behnken design
title_full Optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by Box-Behnken design
title_fullStr Optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by Box-Behnken design
title_full_unstemmed Optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by Box-Behnken design
title_sort optimization of basic catalyst with ammoniated polyethylene glycol for the removal of naphthenic acid from petroleum crude oil by box-behnken design
publisher Springer Verlag
publishDate 2015
url http://eprints.utm.my/id/eprint/58718/
http://dx.doi.org/10.1007/s10098-015-0981-2
_version_ 1709667343852896256
score 13.211869