Recognition of human activities from still image using novel classifier
The quest for recognizing human activities and categorizing their features from still images using efficient and accurate classifier is never ending. This is more challenging than extracting information from video due to the absence of any prior knowledge resembling frames stream. Human Activities R...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Published: |
Asian Research Publishing Network (ARPN)
2015
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/55226/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.55226 |
---|---|
record_format |
eprints |
spelling |
my.utm.552262016-09-04T01:12:24Z http://eprints.utm.my/id/eprint/55226/ Recognition of human activities from still image using novel classifier Sulong, Ghazali Mohammedali, Ammar T Technology (General) The quest for recognizing human activities and categorizing their features from still images using efficient and accurate classifier is never ending. This is more challenging than extracting information from video due to the absence of any prior knowledge resembling frames stream. Human Activities Recognition (HAR) refers to computer identification of specific activities to aid understanding of human behaviors in diversified applications such as surveillance cameras, security systems and automotive industry. We developed a novel model for classifier and used it in three main stages including preprocessing (foreground extraction), segmentation (background subtraction) to extract useful features from object and sort out these features by the classifier (classification). The model is further simulated using MATLAB programming. Our new classifier generates slightly different results for still image based on dataset INRIA and KTH for 780 images of (64*128) pixels format obtained from literature. The recognition rate of 86.2% for five activities such as running, walking, jumping, standing and sitting achieved by us is highly promising compared to the existing one of 85% over last decade. Asian Research Publishing Network (ARPN) 2015-01-01 Article PeerReviewed Sulong, Ghazali and Mohammedali, Ammar (2015) Recognition of human activities from still image using novel classifier. Journal of Theoretical and Applied Information Technology, 71 (1). pp. 115-121. ISSN 1992-8645 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
T Technology (General) |
spellingShingle |
T Technology (General) Sulong, Ghazali Mohammedali, Ammar Recognition of human activities from still image using novel classifier |
description |
The quest for recognizing human activities and categorizing their features from still images using efficient and accurate classifier is never ending. This is more challenging than extracting information from video due to the absence of any prior knowledge resembling frames stream. Human Activities Recognition (HAR) refers to computer identification of specific activities to aid understanding of human behaviors in diversified applications such as surveillance cameras, security systems and automotive industry. We developed a novel model for classifier and used it in three main stages including preprocessing (foreground extraction), segmentation (background subtraction) to extract useful features from object and sort out these features by the classifier (classification). The model is further simulated using MATLAB programming. Our new classifier generates slightly different results for still image based on dataset INRIA and KTH for 780 images of (64*128) pixels format obtained from literature. The recognition rate of 86.2% for five activities such as running, walking, jumping, standing and sitting achieved by us is highly promising compared to the existing one of 85% over last decade. |
format |
Article |
author |
Sulong, Ghazali Mohammedali, Ammar |
author_facet |
Sulong, Ghazali Mohammedali, Ammar |
author_sort |
Sulong, Ghazali |
title |
Recognition of human activities from still image using novel classifier |
title_short |
Recognition of human activities from still image using novel classifier |
title_full |
Recognition of human activities from still image using novel classifier |
title_fullStr |
Recognition of human activities from still image using novel classifier |
title_full_unstemmed |
Recognition of human activities from still image using novel classifier |
title_sort |
recognition of human activities from still image using novel classifier |
publisher |
Asian Research Publishing Network (ARPN) |
publishDate |
2015 |
url |
http://eprints.utm.my/id/eprint/55226/ |
_version_ |
1643653733005918208 |
score |
13.211869 |