Estimating effective connectivity from fMRI data using factor-based subspace autoregressive models
We consider the problem of identifying large-scale effective connectivity of brain networks from fMRI data. Standard vector autoregressive (VAR) models fail to estimate reliably networks with large number of nodes. We propose a new method based on factor modeling for reliable and efficient high-dime...
保存先:
主要な著者: | , , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Institute of Electrical and Electronics Engineers (IEEE)
2015
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/52734/ http://dx.doi.org/10.1109/LSP.2014.2365634 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|