Model-based fault detection and diagnosis optimization for process control rig
One of the challenges research on model based fault detection and diagnosis of a system is finding the accurate models. In this paper, fuzzy logic based model using genetic algorithm for optimizing the membership function is used in the development of fault detection and diagnosis of a process contr...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2013
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/51171/ http://dx.doi.org/10.1109/ASCC.2013.6606106 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.51171 |
---|---|
record_format |
eprints |
spelling |
my.utm.511712017-09-17T08:11:07Z http://eprints.utm.my/id/eprint/51171/ Model-based fault detection and diagnosis optimization for process control rig Rahman, R. Z. A. Yusof, R. Ismail, F. S. TK Electrical engineering. Electronics Nuclear engineering One of the challenges research on model based fault detection and diagnosis of a system is finding the accurate models. In this paper, fuzzy logic based model using genetic algorithm for optimizing the membership function is used in the development of fault detection and diagnosis of a process control rig. The model is used to generate various residual signals, which relate to the faults of the system. These residual signals are used by artificial neural networks to classify the respective faults and finally to determine the faults of the system. Comparisons of the fault classification technique are done for two different models of the process control rig that are the conventional fuzzy model and the optimized fuzzy-GA model. The results show that the fuzzy-GA model gives more accurate fault classifications as compared to the conventional fuzzy logic model. 2013 Conference or Workshop Item PeerReviewed Rahman, R. Z. A. and Yusof, R. and Ismail, F. S. (2013) Model-based fault detection and diagnosis optimization for process control rig. In: 2013 9Th Asian Control Conference, Ascc 2013. http://dx.doi.org/10.1109/ASCC.2013.6606106 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Rahman, R. Z. A. Yusof, R. Ismail, F. S. Model-based fault detection and diagnosis optimization for process control rig |
description |
One of the challenges research on model based fault detection and diagnosis of a system is finding the accurate models. In this paper, fuzzy logic based model using genetic algorithm for optimizing the membership function is used in the development of fault detection and diagnosis of a process control rig. The model is used to generate various residual signals, which relate to the faults of the system. These residual signals are used by artificial neural networks to classify the respective faults and finally to determine the faults of the system. Comparisons of the fault classification technique are done for two different models of the process control rig that are the conventional fuzzy model and the optimized fuzzy-GA model. The results show that the fuzzy-GA model gives more accurate fault classifications as compared to the conventional fuzzy logic model. |
format |
Conference or Workshop Item |
author |
Rahman, R. Z. A. Yusof, R. Ismail, F. S. |
author_facet |
Rahman, R. Z. A. Yusof, R. Ismail, F. S. |
author_sort |
Rahman, R. Z. A. |
title |
Model-based fault detection and diagnosis optimization for process control rig |
title_short |
Model-based fault detection and diagnosis optimization for process control rig |
title_full |
Model-based fault detection and diagnosis optimization for process control rig |
title_fullStr |
Model-based fault detection and diagnosis optimization for process control rig |
title_full_unstemmed |
Model-based fault detection and diagnosis optimization for process control rig |
title_sort |
model-based fault detection and diagnosis optimization for process control rig |
publishDate |
2013 |
url |
http://eprints.utm.my/id/eprint/51171/ http://dx.doi.org/10.1109/ASCC.2013.6606106 |
_version_ |
1643652960656293888 |
score |
13.211869 |