Fast optimization method : the window size and hurst parameter estimator on self-similar network traffic
This paper describes a version of the fast optimization method (FOM) used to estimate the Hurst parameter (H) with appropriate window sizes in self-similar network traffic. Large or short window sizes, for example, may cause the results to become unreliable. Estimating window sizes requires that th...
Saved in:
Main Authors: | Idris, Mohd. Yazid, Abdullah, Abdul Hanan, Maarof, Mohd. Aizaini |
---|---|
格式: | Article |
出版: |
Taru Publications, New Delhi
2007
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/5032/ http://dx.doi.org/10.1080/02522667.2007.10699750 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Fast optimization method: an on-line hurst parameter estimator
由: Idris, Mohd. Yazid, et al.
出版: (2007) -
Iterative window size estimation on self-similarity measurement for network traffic anomaly detection
由: Idris, Mohd. Yazid, et al.
出版: (2004) -
An efficient on-line hurst parameter estimator for detecting volume-based network intrusion attacks
由: Idris, Mohd. Yazid
出版: (2008) -
Enhanced CNN-LSTM Deep Learning for
SCADA IDS Featuring Hurst Parameter Self-Similarity
由: Balla, Asaad, et al.
出版: (2024) -
Enhanced CNN-LSTM deep learning for SCADA IDS featuring hurst parameter self-similarity
由: Balla, Asaad, et al.
出版: (2024)