Fast optimization method : the window size and hurst parameter estimator on self-similar network traffic
This paper describes a version of the fast optimization method (FOM) used to estimate the Hurst parameter (H) with appropriate window sizes in self-similar network traffic. Large or short window sizes, for example, may cause the results to become unreliable. Estimating window sizes requires that th...
保存先:
主要な著者: | Idris, Mohd. Yazid, Abdullah, Abdul Hanan, Maarof, Mohd. Aizaini |
---|---|
フォーマット: | 論文 |
出版事項: |
Taru Publications, New Delhi
2007
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/5032/ http://dx.doi.org/10.1080/02522667.2007.10699750 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Fast optimization method: an on-line hurst parameter estimator
著者:: Idris, Mohd. Yazid, 等
出版事項: (2007) -
Iterative window size estimation on self-similarity measurement for network traffic anomaly detection
著者:: Idris, Mohd. Yazid, 等
出版事項: (2004) -
An efficient on-line hurst parameter estimator for detecting volume-based network intrusion attacks
著者:: Idris, Mohd. Yazid
出版事項: (2008) -
Enhanced CNN-LSTM Deep Learning for
SCADA IDS Featuring Hurst Parameter Self-Similarity
著者:: Balla, Asaad, 等
出版事項: (2024) -
Enhanced CNN-LSTM deep learning for SCADA IDS featuring hurst parameter self-similarity
著者:: Balla, Asaad, 等
出版事項: (2024)