Validation of hierarchical gene clusters using repeated measurements
Hierarchical clustering is an unsupervised technique, which is a common approach to study protein and gene expression data. In clustering, the patterns of expression of different genes are grouped into distinct clusters, in which the genes in the same cluster are assumed potential to be functionally...
保存先:
主要な著者: | Mohamad, Mohd. Saberi, Lim, Fong Tee, Deris, Safaai, Mohd. Faudzi, Ahmad ‘Athif, Abd. Latiff, Muhammad Shafie, Sallehuddin, Roselina |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Penerbit UTM
2013
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/50178/1/Mohd.SaberiMohamad2013_Validationofhierarchicalgene.pdf http://eprints.utm.my/id/eprint/50178/ http://dx.doi.org/10.11113/jt.v61.1616 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Hybrid of hierarchical and partitional clustering algorithm for gene expression data
著者:: Raja Kumaran, Shamini, 等
出版事項: (2020) -
Hierarchical cluster ensemble selection
著者:: Akbari, Ebrahim, 等
出版事項: (2015) -
Biological-based semi-supervised clustering algorithm to improve gene function prediction
著者:: Kasim, Shahreen, 等
出版事項: (2011) -
Selecting informative genes from leukemia gene expression data using a hybrid approach for cancer classification
著者:: Mohamad, Mohd. Saberi, 等
出版事項: (2007) -
Particle swarm optimization with a modified sigmoid function for gene selection from gene expression data
著者:: Mohamad, Mohd. Saberi, 等
出版事項: (2010)