Application of ANFIS in predicting TiAlN coatings flank wear
In this paper, a new approach in predicting the flank wear of Titanium Aluminum Nitrite (TiAlN) coatings using Adaptive Network Based Fuzzy Inference System (ANFIS) is implemented. TiAlN coated cutting tool is widely used in machining due to its excellent resistance to wear. The TiAlN coatings were...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2011
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/45596/ http://dx.doi.org/10.1109/CIMSim.2011.20 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.45596 |
---|---|
record_format |
eprints |
spelling |
my.utm.455962017-09-04T05:08:00Z http://eprints.utm.my/id/eprint/45596/ Application of ANFIS in predicting TiAlN coatings flank wear S. Z. M., Hashim H., Haron T58.5-58.64 Information technology In this paper, a new approach in predicting the flank wear of Titanium Aluminum Nitrite (TiAlN) coatings using Adaptive Network Based Fuzzy Inference System (ANFIS) is implemented. TiAlN coated cutting tool is widely used in machining due to its excellent resistance to wear. The TiAlN coatings were formed using Physical Vapor Deposition (PVD) magnetron sputtering process. The substrate sputtering power, bias voltage and temperature were selected as the input parameters and the flank wear as an output of the process. A statistical design of experiment called Response Surface Methodology (RSM) was used in collecting optimized data. The ANFIS model was trained using the limited experimental data. The triangular, trapezoidal, bell and Gaussian shapes of membership functions were used for inputs as well as output. The results of ANFIS model were validated with the testing data and compared with fuzzy rule-based and RSM flank wear models in terms of the root mean square error (RMSE), co-efficient determination (R2) and model accuracy (A). The result indicated that the ANFIS model using three bell shapes membership function obtained better result compared to the fuzzy and RSM flank wear models. The result also indicated that the ANFIS model could predict the output response in high prediction accuracy even using limited training data. 2011 Conference or Workshop Item PeerReviewed S. Z. M., Hashim and H., Haron (2011) Application of ANFIS in predicting TiAlN coatings flank wear. In: Third International Conference on Computational Intelligence, Modelling & Simulation, 20-22 Sept. 2011, Langkawi, Malaysia. http://dx.doi.org/10.1109/CIMSim.2011.20 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
T58.5-58.64 Information technology |
spellingShingle |
T58.5-58.64 Information technology S. Z. M., Hashim H., Haron Application of ANFIS in predicting TiAlN coatings flank wear |
description |
In this paper, a new approach in predicting the flank wear of Titanium Aluminum Nitrite (TiAlN) coatings using Adaptive Network Based Fuzzy Inference System (ANFIS) is implemented. TiAlN coated cutting tool is widely used in machining due to its excellent resistance to wear. The TiAlN coatings were formed using Physical Vapor Deposition (PVD) magnetron sputtering process. The substrate sputtering power, bias voltage and temperature were selected as the input parameters and the flank wear as an output of the process. A statistical design of experiment called Response Surface Methodology (RSM) was used in collecting optimized data. The ANFIS model was trained using the limited experimental data. The triangular, trapezoidal, bell and Gaussian shapes of membership functions were used for inputs as well as output. The results of ANFIS model were validated with the testing data and compared with fuzzy rule-based and RSM flank wear models in terms of the root mean square error (RMSE), co-efficient determination (R2) and model accuracy (A). The result indicated that the ANFIS model using three bell shapes membership function obtained better result compared to the fuzzy and RSM flank wear models. The result also indicated that the ANFIS model could predict the output response in high prediction accuracy even using limited training data. |
format |
Conference or Workshop Item |
author |
S. Z. M., Hashim H., Haron |
author_facet |
S. Z. M., Hashim H., Haron |
author_sort |
S. Z. M., Hashim |
title |
Application of ANFIS in predicting TiAlN coatings flank wear |
title_short |
Application of ANFIS in predicting TiAlN coatings flank wear |
title_full |
Application of ANFIS in predicting TiAlN coatings flank wear |
title_fullStr |
Application of ANFIS in predicting TiAlN coatings flank wear |
title_full_unstemmed |
Application of ANFIS in predicting TiAlN coatings flank wear |
title_sort |
application of anfis in predicting tialn coatings flank wear |
publishDate |
2011 |
url |
http://eprints.utm.my/id/eprint/45596/ http://dx.doi.org/10.1109/CIMSim.2011.20 |
_version_ |
1643651787238932480 |
score |
13.211869 |