Fault detection and diagnosis via improved multivariate statistical process control

Multivariate Statistical Process Control (MSPC) technique has been widely used for fault detection and diagnosis (FDD). Currently, contribution plots are used as basic tools for fault diagnosis in MSPC approaches. This plot does not exactly diagnose the fault, it just provides greater insight into p...

全面介紹

Saved in:
書目詳細資料
主要作者: Harun, Noorlisa
格式: Thesis
語言:English
出版: 2005
主題:
在線閱讀:http://eprints.utm.my/id/eprint/4294/1/NoorlisaHarunMFChE2005.pdf
http://eprints.utm.my/id/eprint/4294/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id my.utm.4294
record_format eprints
spelling my.utm.42942018-01-16T08:24:59Z http://eprints.utm.my/id/eprint/4294/ Fault detection and diagnosis via improved multivariate statistical process control Harun, Noorlisa QD Chemistry Multivariate Statistical Process Control (MSPC) technique has been widely used for fault detection and diagnosis (FDD). Currently, contribution plots are used as basic tools for fault diagnosis in MSPC approaches. This plot does not exactly diagnose the fault, it just provides greater insight into possible causes and thereby narrow down the search. Hence, the cause of the faults cannot be found in a straightforward manner. Therefore, this study is conducted to introduce a new approach for detecting and diagnosing fault via correlation technique. The correlation coefficient is determined using multivariate analysis techniques, namely Principal Component Analysis (PCA) and Partial Correlation Analysis (PCorrA). An industrial precut multicomponent distillation column is used as a unit operation in this research. The column model is developed using Matlab 6.1. Individual charting technique such as Shewhart, Exponential Weight Moving Average (EWMA) and Moving Average and Moving Range (MAMR) charts are used to facilitate the FDD. Based on the results obtained from this study, the efficiency of Shewhart chart in detecting faults for both quality variables (Oleic acid, xc8 and linoleic acid, xc9) are 100%, which is better than EWMA (75% for xc8 and 77.5% for xc9) and MAMR (63.8% for xc8 and 70% for xc9). The percentage of exact faults diagnoses using PCorrA technique in developing the control limits for Shewhart chart is 100% while using PCA is 87.5%. It shows that the implementation of PCorrA technique is better than PCA technique. Therefore, the usage of PCorrA technique in Shewhart chart for fault detection and diagnosis gives the best for it has the highest fault detection and diagnosis efficiency. 2005-07-10 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/4294/1/NoorlisaHarunMFChE2005.pdf Harun, Noorlisa (2005) Fault detection and diagnosis via improved multivariate statistical process control. Masters thesis, Universiti Teknologi Malaysia, Faculty of Chemical and Natural Resources Engineering.
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QD Chemistry
spellingShingle QD Chemistry
Harun, Noorlisa
Fault detection and diagnosis via improved multivariate statistical process control
description Multivariate Statistical Process Control (MSPC) technique has been widely used for fault detection and diagnosis (FDD). Currently, contribution plots are used as basic tools for fault diagnosis in MSPC approaches. This plot does not exactly diagnose the fault, it just provides greater insight into possible causes and thereby narrow down the search. Hence, the cause of the faults cannot be found in a straightforward manner. Therefore, this study is conducted to introduce a new approach for detecting and diagnosing fault via correlation technique. The correlation coefficient is determined using multivariate analysis techniques, namely Principal Component Analysis (PCA) and Partial Correlation Analysis (PCorrA). An industrial precut multicomponent distillation column is used as a unit operation in this research. The column model is developed using Matlab 6.1. Individual charting technique such as Shewhart, Exponential Weight Moving Average (EWMA) and Moving Average and Moving Range (MAMR) charts are used to facilitate the FDD. Based on the results obtained from this study, the efficiency of Shewhart chart in detecting faults for both quality variables (Oleic acid, xc8 and linoleic acid, xc9) are 100%, which is better than EWMA (75% for xc8 and 77.5% for xc9) and MAMR (63.8% for xc8 and 70% for xc9). The percentage of exact faults diagnoses using PCorrA technique in developing the control limits for Shewhart chart is 100% while using PCA is 87.5%. It shows that the implementation of PCorrA technique is better than PCA technique. Therefore, the usage of PCorrA technique in Shewhart chart for fault detection and diagnosis gives the best for it has the highest fault detection and diagnosis efficiency.
format Thesis
author Harun, Noorlisa
author_facet Harun, Noorlisa
author_sort Harun, Noorlisa
title Fault detection and diagnosis via improved multivariate statistical process control
title_short Fault detection and diagnosis via improved multivariate statistical process control
title_full Fault detection and diagnosis via improved multivariate statistical process control
title_fullStr Fault detection and diagnosis via improved multivariate statistical process control
title_full_unstemmed Fault detection and diagnosis via improved multivariate statistical process control
title_sort fault detection and diagnosis via improved multivariate statistical process control
publishDate 2005
url http://eprints.utm.my/id/eprint/4294/1/NoorlisaHarunMFChE2005.pdf
http://eprints.utm.my/id/eprint/4294/
_version_ 1643644016440377344
score 13.251813