An active learning approach for radial basis function neural networks
This paper presents a new Active Learning algorithm to train Radial Basis Function (RBF) Artificial Neural Networks (ANN) for model reduction problems. The new approach is based on the assumption that the unobserved training data y at input x, lies within a set F x y f x y f x ( ) : ( ) ( ) = ! ! &q...
保存先:
主要な著者: | Abdullah, S. S., Allwright, J. C. |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Penerbit UTM Press
2006
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/4112/1/JTD_2005_29.pdf http://eprints.utm.my/id/eprint/4112/ http://www.penerbit.utm.my/onlinejournal/45/D/JTDis45D05.pdf |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Face detection using radial basis function neural networks
著者:: Abdullah, Shahrum Shah, 等
出版事項: (2008) -
Face detection using radial basis function neural networks
著者:: A. Aziz, Khairul Azha
出版事項: (2008) -
Gold price prediction using radial basis function neural network
著者:: Mohd. Hussein, Shamsul Faisal
出版事項: (2010) -
Enhanced radial basis function neural networks for ozone level estimation
著者:: Ha, Quang P., 等
出版事項: (2015) -
Fault location with DGs in radial distribution system using radial basis function neural network
著者:: Abd. Khalid, Saifulnizam, 等
出版事項: (2021)