An active learning approach for radial basis function neural networks
This paper presents a new Active Learning algorithm to train Radial Basis Function (RBF) Artificial Neural Networks (ANN) for model reduction problems. The new approach is based on the assumption that the unobserved training data y at input x, lies within a set F x y f x y f x ( ) : ( ) ( ) = ! ! &q...
Saved in:
Main Authors: | Abdullah, S. S., Allwright, J. C. |
---|---|
格式: | Article |
語言: | English |
出版: |
Penerbit UTM Press
2006
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/4112/1/JTD_2005_29.pdf http://eprints.utm.my/id/eprint/4112/ http://www.penerbit.utm.my/onlinejournal/45/D/JTDis45D05.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Face detection using radial basis function neural networks
由: Abdullah, Shahrum Shah, et al.
出版: (2008) -
Face detection using radial basis function neural networks
由: A. Aziz, Khairul Azha
出版: (2008) -
Gold price prediction using radial basis function neural network
由: Mohd. Hussein, Shamsul Faisal
出版: (2010) -
Enhanced radial basis function neural networks for ozone level estimation
由: Ha, Quang P., et al.
出版: (2015) -
Fault location with DGs in radial distribution system using radial basis function neural network
由: Abd. Khalid, Saifulnizam, et al.
出版: (2021)