Epileptic seizure as a system of ordinary differential equation
One of the applications of differential equation is dynamic systems, where the description of a system in state space by first-order vector nonlinear. An epileptic seizure is a dynamic system since it’s spends through time. Epilepsy is a collection of disturbances characterized by recurrent paroxysm...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2012
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/32063/1/AmeenomaralibarjaMFS2011.pdf http://eprints.utm.my/id/eprint/32063/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | One of the applications of differential equation is dynamic systems, where the description of a system in state space by first-order vector nonlinear. An epileptic seizure is a dynamic system since it’s spends through time. Epilepsy is a collection of disturbances characterized by recurrent paroxysmal electrical discharges of the cerebral cortex that resulted in intermittent disorders of brain functions. Electroencephalography (EEG) is a test that measures and records the electrical activities of the brain from the scalp by using sensors. Our main interest in this dissertation is to model an epileptic seizure as a system of ordinary differential equation. |
---|