Epileptic seizure as a system of ordinary differential equation

One of the applications of differential equation is dynamic systems, where the description of a system in state space by first-order vector nonlinear. An epileptic seizure is a dynamic system since it’s spends through time. Epilepsy is a collection of disturbances characterized by recurrent paroxysm...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ali Barja, Ameen Omar
التنسيق: أطروحة
اللغة:English
منشور في: 2012
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/32063/1/AmeenomaralibarjaMFS2011.pdf
http://eprints.utm.my/id/eprint/32063/
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:One of the applications of differential equation is dynamic systems, where the description of a system in state space by first-order vector nonlinear. An epileptic seizure is a dynamic system since it’s spends through time. Epilepsy is a collection of disturbances characterized by recurrent paroxysmal electrical discharges of the cerebral cortex that resulted in intermittent disorders of brain functions. Electroencephalography (EEG) is a test that measures and records the electrical activities of the brain from the scalp by using sensors. Our main interest in this dissertation is to model an epileptic seizure as a system of ordinary differential equation.