Function and surface approximation based on enhanced kernel regression for small sample sets
The function approximation problem is to find the appropriate relationship between a dependent and independent variable(s). Function approximation algorithms generally require sufficient samples to approximate a function. Insufficient samples may cause any function approximation algorithm to result...
保存先:
主要な著者: | Shapiai, Mohd. Ibrahim, Ibrahim, Zuwairie, Khalid, Marzuki, Lee, Wen Jau, Pavlovic, Vladimir, Watada, Juilzo |
---|---|
フォーマット: | 論文 |
出版事項: |
ICIC International
2011
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/29684/ http://www.ijicic.org/ijicic-10-06023.pdf |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Enhanced Nadaraya-Watson kernel regression: surface approximation for extremely small samples
著者:: Shapiai, Mohd. Ibrahim, 等
出版事項: (2011) -
Enhanced nadaraya-watson kernel surface approximation for extremely small samples
著者:: Shapiai @ Abd. R., Mohd. Ibrahim, 等
出版事項: (2011) -
Recipe generation from small samples: incorporating an improved weighted kernel regression with correlation factor
著者:: Shapiai, Mohd. Ibrahim, 等
出版事項: (2011) -
Recipe generation from small samples by weighted kernel regression
著者:: Shapiai, Mohd. Ibrahim, 等
出版事項: (2011) -
Enhanced kernel regression with prior knowledge in solving small sample problems
著者:: Shapiai, Mohd. Ibrahim, 等
出版事項: (2011)