Parameter estimation in stochastic differential equations
Financial processes as processes in nature, are subject to stochastic fluctuations. Stochastic differential equations turn out to be an advantageous representation of such noisy, real-world problems, and together with their identification, they play an important role in the sectors of finance, but a...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Springer-Verlag Berlin Heidelberg
2010
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/25964/ http://dx.doi.org/10.1007/978-3-642-14788-3_51 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.25964 |
---|---|
record_format |
eprints |
spelling |
my.utm.259642018-03-22T10:54:48Z http://eprints.utm.my/id/eprint/25964/ Parameter estimation in stochastic differential equations Weber, Gerhard-Wilhelm Gorgulu, Zafer-Korcan Abd.Rahman, Haliza Bahar, Arifah Q Science (General) Financial processes as processes in nature, are subject to stochastic fluctuations. Stochastic differential equations turn out to be an advantageous representation of such noisy, real-world problems, and together with their identification, they play an important role in the sectors of finance, but also in physics and biotechnology. These equations, however, are often hard to represent and to resolve. Thus we express them in a simplified manner of approximation by discretization and additive models based on splines. This defines a trilevel problem consisting of an optimization and a representation problem (portfolio optimization), and a parameter estimation (Weber et al. Financial Regression and Organization. In: Special Issue on Optimization in Finance, DCDIS-B, 2010). Two types of parameters dependency, linear and nonlinear, are considered by constructing a penalized residual sum of squares and investigating the related Tikhonov regularization problem for the first one. In the nonlinear case Gauss–Newton’s method and Levenberg–Marquardt’s method are employed in determining the iteration steps. Both cases are treated using continuous optimization techniques by the elegant framework of conic quadratic programming. These convex problems are well-structured, hence, allowing the use of the efficient interior point methods. Furthermore, we present nonparametric and related methods, and introduce into research done at the moment in our research groups which ends with a conclusion. Springer-Verlag Berlin Heidelberg 2010 Article PeerReviewed Weber, Gerhard-Wilhelm and Gorgulu, Zafer-Korcan and Abd.Rahman, Haliza and Bahar, Arifah (2010) Parameter estimation in stochastic differential equations. Proceeding of the Conference DYNA2008, Dynamics, Games and Science Springer-Verlag 2010, 2 . pp. 703-733. http://dx.doi.org/10.1007/978-3-642-14788-3_51 DOI:10.1007/978-3-642-14788-3_51 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
Q Science (General) |
spellingShingle |
Q Science (General) Weber, Gerhard-Wilhelm Gorgulu, Zafer-Korcan Abd.Rahman, Haliza Bahar, Arifah Parameter estimation in stochastic differential equations |
description |
Financial processes as processes in nature, are subject to stochastic fluctuations. Stochastic differential equations turn out to be an advantageous representation of such noisy, real-world problems, and together with their identification, they play an important role in the sectors of finance, but also in physics and biotechnology. These equations, however, are often hard to represent and to resolve. Thus we express them in a simplified manner of approximation by discretization and additive models based on splines. This defines a trilevel problem consisting of an optimization and a representation problem (portfolio optimization), and a parameter estimation (Weber et al. Financial Regression and Organization. In: Special Issue on Optimization in Finance, DCDIS-B, 2010). Two types of parameters dependency, linear and nonlinear, are considered by constructing a penalized residual sum of squares and investigating the related Tikhonov regularization problem for the first one. In the nonlinear case Gauss–Newton’s method and Levenberg–Marquardt’s method are employed in determining the iteration steps. Both cases are treated using continuous optimization techniques by the elegant framework of conic quadratic programming. These convex problems are well-structured, hence, allowing the use of the efficient interior point methods. Furthermore, we present nonparametric and related methods, and introduce into research done at the moment in our research groups which ends with a conclusion. |
format |
Article |
author |
Weber, Gerhard-Wilhelm Gorgulu, Zafer-Korcan Abd.Rahman, Haliza Bahar, Arifah |
author_facet |
Weber, Gerhard-Wilhelm Gorgulu, Zafer-Korcan Abd.Rahman, Haliza Bahar, Arifah |
author_sort |
Weber, Gerhard-Wilhelm |
title |
Parameter estimation in stochastic differential equations |
title_short |
Parameter estimation in stochastic differential equations |
title_full |
Parameter estimation in stochastic differential equations |
title_fullStr |
Parameter estimation in stochastic differential equations |
title_full_unstemmed |
Parameter estimation in stochastic differential equations |
title_sort |
parameter estimation in stochastic differential equations |
publisher |
Springer-Verlag Berlin Heidelberg |
publishDate |
2010 |
url |
http://eprints.utm.my/id/eprint/25964/ http://dx.doi.org/10.1007/978-3-642-14788-3_51 |
_version_ |
1643647639278845952 |
score |
13.211869 |