Diffusion analysis of EFN-MDS structure
In general, block ciphers consist of one top-level structural model into which the round function F is plugged into. The study focuses on Extended-Feistel- Network (EFN) that is a generalization of a Feistel Network (FN). This structure is employed in several ciphers that were developed for Advanced...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2006
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/2251/1/SubariahIbrahim2006_DiffusionAnalysisOfEFN-MDSStructure.pdf http://eprints.utm.my/id/eprint/2251/ https://www.researchgate.net/publication/237105553_Diffusion_Analysis_of_EFN-MDS_Structure |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | In general, block ciphers consist of one top-level structural model into which the round function F is plugged into. The study focuses on Extended-Feistel- Network (EFN) that is a generalization of a Feistel Network (FN). This structure is employed in several ciphers that were developed for Advanced Encryption Standard such as CAST-256, MARS and RC6. The problem with EFN is that it requires many rounds when the number of sub-blocks used in EFN is large. This paper proposed a new structural model that can overcome this problem by incorporating EFN with a linear transformation based on Maximum Distance Separable (MDS) codes. The diffusion analysis shows that EFN-MDS requires at most half the number of rounds to achieve completeness property as compared to EFN structure. Therefore the proposed structure is suitable for designing ciphers with scalable |
---|