Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method
Oxide dispersion-strengthened copper has the ability to retain most of its properties at elevated temperatures. Among various processes, powder metallurgy route is ideal because of its efficiency in dispersing fine oxide particles. In this study, copper-alumina composites is produced through powder...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit UTM Press
2005
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/1424/1/JTDIS43A.pdf http://eprints.utm.my/id/eprint/1424/ http://dx.doi.org/10.11113/jt.v43.753 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.1424 |
---|---|
record_format |
eprints |
spelling |
my.utm.14242017-11-01T04:17:31Z http://eprints.utm.my/id/eprint/1424/ Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method Hussain, Zuhailawati Koay, Han Keong Q Science (General) Oxide dispersion-strengthened copper has the ability to retain most of its properties at elevated temperatures. Among various processes, powder metallurgy route is ideal because of its efficiency in dispersing fine oxide particles. In this study, copper-alumina composites is produced through powder metallurgy route whereby copper powder, which is the matrix, was mixed with alumina powder, which act as reinforcement. Powder mixtures with different compositions of alumina (2.5wt%, 5wt%, 7.5wt% and 10wt%) were prepared. The mixtures were then mixed either by (a) blending process for 45 minutes in a ball mill or (b) mechanical alloying for 45 minutes in a planetary mill. The mixture was then compacted at 200 MPa and sintered under argon atmosphere at 950°C for 1 hour. Results showed that mechanical alloying has produced Cu-Al2O3 composite with better hardness and lower electrical conductivity compared to those prepared by ball milling method Penerbit UTM Press 2005-12 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/1424/1/JTDIS43A.pdf Hussain, Zuhailawati and Koay, Han Keong (2005) Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method. Jurnal Teknologi A (43A). pp. 1-20. ISSN 0127-9696 http://dx.doi.org/10.11113/jt.v43.753 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
Q Science (General) |
spellingShingle |
Q Science (General) Hussain, Zuhailawati Koay, Han Keong Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method |
description |
Oxide dispersion-strengthened copper has the ability to retain most of its properties at elevated temperatures. Among various processes, powder metallurgy route is ideal because of its efficiency in dispersing fine oxide particles. In this study, copper-alumina composites is produced through powder metallurgy route whereby copper powder, which is the matrix, was mixed with alumina powder, which act as reinforcement. Powder mixtures with different compositions of alumina (2.5wt%, 5wt%, 7.5wt% and 10wt%) were prepared. The mixtures were then mixed either by (a) blending process for 45 minutes in a ball mill or (b) mechanical alloying for 45 minutes in a planetary mill. The mixture was then compacted at 200 MPa and sintered under argon atmosphere at 950°C for 1 hour. Results showed that mechanical alloying has produced Cu-Al2O3 composite with better hardness and lower electrical conductivity compared to those prepared by ball milling method |
format |
Article |
author |
Hussain, Zuhailawati Koay, Han Keong |
author_facet |
Hussain, Zuhailawati Koay, Han Keong |
author_sort |
Hussain, Zuhailawati |
title |
Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method |
title_short |
Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method |
title_full |
Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method |
title_fullStr |
Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method |
title_full_unstemmed |
Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method |
title_sort |
studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method |
publisher |
Penerbit UTM Press |
publishDate |
2005 |
url |
http://eprints.utm.my/id/eprint/1424/1/JTDIS43A.pdf http://eprints.utm.my/id/eprint/1424/ http://dx.doi.org/10.11113/jt.v43.753 |
_version_ |
1643643330135851008 |
score |
13.211869 |