Assessment of peat fire susceptibility for carbon emission reduction.
This paper aims are; a) to identify the peat classification based on peat depth and groundwater level; b) to identify CO2 content stored and CO2 emission of peat within the study area; c) to produce a hotspot hazard map using Analytical Hierarchy Process (AHP) and geospatial technologies. These are...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | http://eprints.utm.my/108215/1/MAHAhmadNizam2023_AssessmentofPeatFireSusceptibilityforCarbonEmission.pdf http://eprints.utm.my/108215/ http://dx.doi.org/10.1088/1755-1315/1144/1/012014 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.108215 |
---|---|
record_format |
eprints |
spelling |
my.utm.1082152024-10-22T06:38:43Z http://eprints.utm.my/108215/ Assessment of peat fire susceptibility for carbon emission reduction. M. A. H., Ahmad Nizam S., Mat Taib N. Z., Mohd. Yunus N., Saman TA Engineering (General). Civil engineering (General) This paper aims are; a) to identify the peat classification based on peat depth and groundwater level; b) to identify CO2 content stored and CO2 emission of peat within the study area; c) to produce a hotspot hazard map using Analytical Hierarchy Process (AHP) and geospatial technologies. These are vital components in producing a holistic peat fire management approach. Based on the site works, the majority of the peat within the area is classified as Sapric (low fibre content) using the Von Post Classification System, with an average peat thickness of 0.65m at a maximum depth of 1.2m and average groundwater level of 0.67m. On the other hand, soil samples were collected on-site and tested, indicating an average organic and fibre contents of 45.24% and 37% respectively, with a bulk density of 1.03 Mg/m3. The average carbon content was 30.29 carbon tonne/hectare, hence having the potential to release 381,925.18 tonnes of CO2 annually (tCO2/year). Finally, potential peat fire susceptible areas were classified and visualized on a hotspot hazard map utilizing the data acquired. It can be concluded that continued development without considering appropriate mitigation measures will potentially increase the feasibility of peat ignition, thus, increasing overall carbon emission significantly. 2023 Conference or Workshop Item PeerReviewed application/pdf en http://eprints.utm.my/108215/1/MAHAhmadNizam2023_AssessmentofPeatFireSusceptibilityforCarbonEmission.pdf M. A. H., Ahmad Nizam and S., Mat Taib and N. Z., Mohd. Yunus and N., Saman (2023) Assessment of peat fire susceptibility for carbon emission reduction. In: 7th Malaysia-Japan Joint International Conference 2022, MJJIC 2022, 25 October 2022 - 26 October 2022, Kuala Lumpur, Malaysia. http://dx.doi.org/10.1088/1755-1315/1144/1/012014 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
TA Engineering (General). Civil engineering (General) |
spellingShingle |
TA Engineering (General). Civil engineering (General) M. A. H., Ahmad Nizam S., Mat Taib N. Z., Mohd. Yunus N., Saman Assessment of peat fire susceptibility for carbon emission reduction. |
description |
This paper aims are; a) to identify the peat classification based on peat depth and groundwater level; b) to identify CO2 content stored and CO2 emission of peat within the study area; c) to produce a hotspot hazard map using Analytical Hierarchy Process (AHP) and geospatial technologies. These are vital components in producing a holistic peat fire management approach. Based on the site works, the majority of the peat within the area is classified as Sapric (low fibre content) using the Von Post Classification System, with an average peat thickness of 0.65m at a maximum depth of 1.2m and average groundwater level of 0.67m. On the other hand, soil samples were collected on-site and tested, indicating an average organic and fibre contents of 45.24% and 37% respectively, with a bulk density of 1.03 Mg/m3. The average carbon content was 30.29 carbon tonne/hectare, hence having the potential to release 381,925.18 tonnes of CO2 annually (tCO2/year). Finally, potential peat fire susceptible areas were classified and visualized on a hotspot hazard map utilizing the data acquired. It can be concluded that continued development without considering appropriate mitigation measures will potentially increase the feasibility of peat ignition, thus, increasing overall carbon emission significantly. |
format |
Conference or Workshop Item |
author |
M. A. H., Ahmad Nizam S., Mat Taib N. Z., Mohd. Yunus N., Saman |
author_facet |
M. A. H., Ahmad Nizam S., Mat Taib N. Z., Mohd. Yunus N., Saman |
author_sort |
M. A. H., Ahmad Nizam |
title |
Assessment of peat fire susceptibility for carbon emission reduction. |
title_short |
Assessment of peat fire susceptibility for carbon emission reduction. |
title_full |
Assessment of peat fire susceptibility for carbon emission reduction. |
title_fullStr |
Assessment of peat fire susceptibility for carbon emission reduction. |
title_full_unstemmed |
Assessment of peat fire susceptibility for carbon emission reduction. |
title_sort |
assessment of peat fire susceptibility for carbon emission reduction. |
publishDate |
2023 |
url |
http://eprints.utm.my/108215/1/MAHAhmadNizam2023_AssessmentofPeatFireSusceptibilityforCarbonEmission.pdf http://eprints.utm.my/108215/ http://dx.doi.org/10.1088/1755-1315/1144/1/012014 |
_version_ |
1814043630355087360 |
score |
13.211869 |