An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver
In recent years, mesoporous silica nanoparticles (MSNs) have been applied in various biomedicine fields like bioimaging, drug delivery, and antibacterial alternatives. MSNs could be manufactured through green synthetic methods as environmentally friendly and sustainable synthesis approaches, to impr...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer Nature
2023
|
Subjects: | |
Online Access: | http://eprints.utm.my/106846/1/HesamKamyab2023_AnIntriguingApproachTowardAntibacterialActivity.pdf http://eprints.utm.my/106846/ http://dx.doi.org/10.1038/s41598-023-33095-1 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.106846 |
---|---|
record_format |
eprints |
spelling |
my.utm.1068462024-08-01T05:11:32Z http://eprints.utm.my/106846/ An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver Abbasi, Milad Gholizadeh, Razieh Kasaee, Seyed Reza Vaez, Ahmad Chelliapan, Shreeshivadasan Al‑Qaim, Fouad Fadhil Deyab, Issa Farhan Shafiee, Mostafa Zareshahrabadi, Zahra Amani, Ali Mohammad Mosleh Shirazi, Sareh Kamyab, Hesam Q Science (General) In recent years, mesoporous silica nanoparticles (MSNs) have been applied in various biomedicine fields like bioimaging, drug delivery, and antibacterial alternatives. MSNs could be manufactured through green synthetic methods as environmentally friendly and sustainable synthesis approaches, to improve physiochemical characteristics for biomedical applications. In the present research, we used Rutin (Ru) extract, a biocompatible flavonoid, as the reducing agent and nonsurfactant template for the green synthesis of Ag-decorated MSNs. Transmission electron microscopy (TEM), zeta-potential, x-ray powder diffraction (XRD), fourier transform infrared (FTIR) spectroscopy analysis, scanning electron microscopy (SEM), brunauer–emmett–teller (BET) analysis, and energy-dispersive system (EDS) spectroscopy were used to evaluate the Ag-decorated MSNs physical characteristics. The antimicrobial properties were evaluated against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and also different types of candida. The cytotoxicity test was performed by using the MTT assay. Based on the findings, the significant antimicrobial efficacy of Ru-Ag-decorated MSNs against both gram positive and gram negative bacteria and different types of fungi was detected as well as acceptable safety and low cytotoxicity even at lower concentrations. Our results have given a straightforward and cost-effective method for fabricating biodegradable Ag-decorated MSNs. The applications of these MSNs in the domains of biomedicine appear to be promising. Springer Nature 2023-04-12 Article PeerReviewed application/pdf en http://eprints.utm.my/106846/1/HesamKamyab2023_AnIntriguingApproachTowardAntibacterialActivity.pdf Abbasi, Milad and Gholizadeh, Razieh and Kasaee, Seyed Reza and Vaez, Ahmad and Chelliapan, Shreeshivadasan and Al‑Qaim, Fouad Fadhil and Deyab, Issa Farhan and Shafiee, Mostafa and Zareshahrabadi, Zahra and Amani, Ali Mohammad and Mosleh Shirazi, Sareh and Kamyab, Hesam (2023) An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver. Scientific Reports, 13 (1). pp. 1-12. ISSN 2045-2322 http://dx.doi.org/10.1038/s41598-023-33095-1 DOI:10.1038/s41598-023-33095-1 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
Q Science (General) |
spellingShingle |
Q Science (General) Abbasi, Milad Gholizadeh, Razieh Kasaee, Seyed Reza Vaez, Ahmad Chelliapan, Shreeshivadasan Al‑Qaim, Fouad Fadhil Deyab, Issa Farhan Shafiee, Mostafa Zareshahrabadi, Zahra Amani, Ali Mohammad Mosleh Shirazi, Sareh Kamyab, Hesam An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver |
description |
In recent years, mesoporous silica nanoparticles (MSNs) have been applied in various biomedicine fields like bioimaging, drug delivery, and antibacterial alternatives. MSNs could be manufactured through green synthetic methods as environmentally friendly and sustainable synthesis approaches, to improve physiochemical characteristics for biomedical applications. In the present research, we used Rutin (Ru) extract, a biocompatible flavonoid, as the reducing agent and nonsurfactant template for the green synthesis of Ag-decorated MSNs. Transmission electron microscopy (TEM), zeta-potential, x-ray powder diffraction (XRD), fourier transform infrared (FTIR) spectroscopy analysis, scanning electron microscopy (SEM), brunauer–emmett–teller (BET) analysis, and energy-dispersive system (EDS) spectroscopy were used to evaluate the Ag-decorated MSNs physical characteristics. The antimicrobial properties were evaluated against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and also different types of candida. The cytotoxicity test was performed by using the MTT assay. Based on the findings, the significant antimicrobial efficacy of Ru-Ag-decorated MSNs against both gram positive and gram negative bacteria and different types of fungi was detected as well as acceptable safety and low cytotoxicity even at lower concentrations. Our results have given a straightforward and cost-effective method for fabricating biodegradable Ag-decorated MSNs. The applications of these MSNs in the domains of biomedicine appear to be promising. |
format |
Article |
author |
Abbasi, Milad Gholizadeh, Razieh Kasaee, Seyed Reza Vaez, Ahmad Chelliapan, Shreeshivadasan Al‑Qaim, Fouad Fadhil Deyab, Issa Farhan Shafiee, Mostafa Zareshahrabadi, Zahra Amani, Ali Mohammad Mosleh Shirazi, Sareh Kamyab, Hesam |
author_facet |
Abbasi, Milad Gholizadeh, Razieh Kasaee, Seyed Reza Vaez, Ahmad Chelliapan, Shreeshivadasan Al‑Qaim, Fouad Fadhil Deyab, Issa Farhan Shafiee, Mostafa Zareshahrabadi, Zahra Amani, Ali Mohammad Mosleh Shirazi, Sareh Kamyab, Hesam |
author_sort |
Abbasi, Milad |
title |
An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver |
title_short |
An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver |
title_full |
An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver |
title_fullStr |
An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver |
title_full_unstemmed |
An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver |
title_sort |
intriguing approach toward antibacterial activity of green synthesized rutin-templated mesoporous silica nanoparticles decorated with nanosilver |
publisher |
Springer Nature |
publishDate |
2023 |
url |
http://eprints.utm.my/106846/1/HesamKamyab2023_AnIntriguingApproachTowardAntibacterialActivity.pdf http://eprints.utm.my/106846/ http://dx.doi.org/10.1038/s41598-023-33095-1 |
_version_ |
1806442417263476736 |
score |
13.211869 |