The potentials of Si-doped magnesium oxide nanotubes for decontamination of pollutants

This work investigated the potential of the silicon-doped magnesium oxide nanotubes (Si: MgONT) to serve as a photocatalyst for the treatment of pollutants. The analysis of the photocatalytic properties of the Si: MgONT was carried out based on considering structural, electronic and optical properti...

Full description

Saved in:
Bibliographic Details
Main Authors: Itas, Yahaya Saadu, Mohammad Danmadami, Amina, Razali, Razif, Khandaker, Mayeen Uddin
Format: Article
Published: IOP Publishing Ltd 2023
Subjects:
Online Access:http://eprints.utm.my/106257/
http://dx.doi.org/10.1088/1402-4896/ad0941
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.106257
record_format eprints
spelling my.utm.1062572024-06-20T02:54:15Z http://eprints.utm.my/106257/ The potentials of Si-doped magnesium oxide nanotubes for decontamination of pollutants Itas, Yahaya Saadu Mohammad Danmadami, Amina Razali, Razif Khandaker, Mayeen Uddin QC Physics This work investigated the potential of the silicon-doped magnesium oxide nanotubes (Si: MgONT) to serve as a photocatalyst for the treatment of pollutants. The analysis of the photocatalytic properties of the Si: MgONT was carried out based on considering structural, electronic and optical properties at Si concentrations of 3.12% and 6.25%, respectively. We performed ground state analysis and ionic interactions using density functional theory (DFT) via quantum ESPRESSO and Yambo codes. The results of structural property analysis showed that pristine single-walled magnesium oxide nanotubes (SWMgONT) were stable to the introduction of Si impurities at a concentration of up to 6.25%. The highest binding energy value of −288.66 eV for 3.12% Si-doped SWMgONT showed that photons can be bound more strongly in this system than for 6.25% Si-doped and pure SWMgONT. 3.12% Si-doped SWMgONT exhibited indirect band gaps of 2.36 eV, which is well above the standard overpotential for pollutant degradation, while 6.25% SWMgONT had no bandgap. Analysis of the optical absorption spectra showed that 3.12% SWMgONT absorbs light very well in the visible region and reflects it in the IR region, while pristine and 6.25% MgONT showed poor light absorption in the visible region. On this basis, this work recommended 3.12% Si-doped SWMgONT semiconductor as a better material for dye degradation, CO2 reduction and hydrogen evolution. IOP Publishing Ltd 2023-11-16 Article PeerReviewed Itas, Yahaya Saadu and Mohammad Danmadami, Amina and Razali, Razif and Khandaker, Mayeen Uddin (2023) The potentials of Si-doped magnesium oxide nanotubes for decontamination of pollutants. Physica Scripta, 98 (12). NA. ISSN 0031-8949 http://dx.doi.org/10.1088/1402-4896/ad0941 DOI:10.1088/1402-4896/ad0941
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic QC Physics
spellingShingle QC Physics
Itas, Yahaya Saadu
Mohammad Danmadami, Amina
Razali, Razif
Khandaker, Mayeen Uddin
The potentials of Si-doped magnesium oxide nanotubes for decontamination of pollutants
description This work investigated the potential of the silicon-doped magnesium oxide nanotubes (Si: MgONT) to serve as a photocatalyst for the treatment of pollutants. The analysis of the photocatalytic properties of the Si: MgONT was carried out based on considering structural, electronic and optical properties at Si concentrations of 3.12% and 6.25%, respectively. We performed ground state analysis and ionic interactions using density functional theory (DFT) via quantum ESPRESSO and Yambo codes. The results of structural property analysis showed that pristine single-walled magnesium oxide nanotubes (SWMgONT) were stable to the introduction of Si impurities at a concentration of up to 6.25%. The highest binding energy value of −288.66 eV for 3.12% Si-doped SWMgONT showed that photons can be bound more strongly in this system than for 6.25% Si-doped and pure SWMgONT. 3.12% Si-doped SWMgONT exhibited indirect band gaps of 2.36 eV, which is well above the standard overpotential for pollutant degradation, while 6.25% SWMgONT had no bandgap. Analysis of the optical absorption spectra showed that 3.12% SWMgONT absorbs light very well in the visible region and reflects it in the IR region, while pristine and 6.25% MgONT showed poor light absorption in the visible region. On this basis, this work recommended 3.12% Si-doped SWMgONT semiconductor as a better material for dye degradation, CO2 reduction and hydrogen evolution.
format Article
author Itas, Yahaya Saadu
Mohammad Danmadami, Amina
Razali, Razif
Khandaker, Mayeen Uddin
author_facet Itas, Yahaya Saadu
Mohammad Danmadami, Amina
Razali, Razif
Khandaker, Mayeen Uddin
author_sort Itas, Yahaya Saadu
title The potentials of Si-doped magnesium oxide nanotubes for decontamination of pollutants
title_short The potentials of Si-doped magnesium oxide nanotubes for decontamination of pollutants
title_full The potentials of Si-doped magnesium oxide nanotubes for decontamination of pollutants
title_fullStr The potentials of Si-doped magnesium oxide nanotubes for decontamination of pollutants
title_full_unstemmed The potentials of Si-doped magnesium oxide nanotubes for decontamination of pollutants
title_sort potentials of si-doped magnesium oxide nanotubes for decontamination of pollutants
publisher IOP Publishing Ltd
publishDate 2023
url http://eprints.utm.my/106257/
http://dx.doi.org/10.1088/1402-4896/ad0941
_version_ 1802977249030307840
score 13.211869