Residence time distribution of an offshore floating photobioreactor under hydrodynamic sloshing effect
Sloshing is the movement of fluid in a partially filled vessel subjected to external motions. Although sloshing causes intense forces and instability to floating structures, the internal motion of liquid caused by external forces might be useful for devices that require mixing. For offshore floating...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Published: |
Institution of Chemical Engineers
2023
|
Subjects: | |
Online Access: | http://eprints.utm.my/105923/ http://dx.doi.org/10.1016/j.cherd.2023.09.014 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.105923 |
---|---|
record_format |
eprints |
spelling |
my.utm.1059232024-05-26T09:10:18Z http://eprints.utm.my/105923/ Residence time distribution of an offshore floating photobioreactor under hydrodynamic sloshing effect Khor, Wei Han Goh, Jie Heng Yew, Qi Ming Kang, Hooi-Siang Lim, Jun-Wei Iwamoto, Koji Tang, Collin Howe-Hing Lee, Kee-Quen Wu, Yun-Ta Goh, Pei Sean TJ Mechanical engineering and machinery Sloshing is the movement of fluid in a partially filled vessel subjected to external motions. Although sloshing causes intense forces and instability to floating structures, the internal motion of liquid caused by external forces might be useful for devices that require mixing. For offshore floating photobioreactors, sloshing induced by external ocean wave forces are desirable, as the movement of liquid is able to bring about mixing and mass transfer for the nutrients and gas in the microalgae culture. The objective of this study is to investigate the correlation between the regular wave-induced sloshing of different motions (surge, heave, and pitch) on the mixing behaviour of the novel offshore floating photobioreactor designed to utilize the ocean surface waves for the effects of mixing. To determine the residence time distribution (RTD) of the stagnant volume of the photobioreactor, dissolved solids were injected into the system. The concentration of dissolved solids was measured using a total dissolve solid (TDS) sensor. The mixing caused by sloshing motion had the highest intensity during pitching motion. A homogenous solution was formed just after 65.9 s for the filling ratio of 30 %, with the rotation angle of 8 degrees and frequency of 0.21 Hz. Thus, wave-induced sloshing is able to generate intense mixing to the medium during pitching motion but still has non-ideal behaviours, such as bypass and dead zones during horizontal and vertical motion. Institution of Chemical Engineers 2023 Article PeerReviewed Khor, Wei Han and Goh, Jie Heng and Yew, Qi Ming and Kang, Hooi-Siang and Lim, Jun-Wei and Iwamoto, Koji and Tang, Collin Howe-Hing and Lee, Kee-Quen and Wu, Yun-Ta and Goh, Pei Sean (2023) Residence time distribution of an offshore floating photobioreactor under hydrodynamic sloshing effect. Chemical Engineering Research and Design, 198 (NA). pp. 340-348. ISSN 0263-8762 http://dx.doi.org/10.1016/j.cherd.2023.09.014 DOI : 10.1016/j.cherd.2023.09.014 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TJ Mechanical engineering and machinery |
spellingShingle |
TJ Mechanical engineering and machinery Khor, Wei Han Goh, Jie Heng Yew, Qi Ming Kang, Hooi-Siang Lim, Jun-Wei Iwamoto, Koji Tang, Collin Howe-Hing Lee, Kee-Quen Wu, Yun-Ta Goh, Pei Sean Residence time distribution of an offshore floating photobioreactor under hydrodynamic sloshing effect |
description |
Sloshing is the movement of fluid in a partially filled vessel subjected to external motions. Although sloshing causes intense forces and instability to floating structures, the internal motion of liquid caused by external forces might be useful for devices that require mixing. For offshore floating photobioreactors, sloshing induced by external ocean wave forces are desirable, as the movement of liquid is able to bring about mixing and mass transfer for the nutrients and gas in the microalgae culture. The objective of this study is to investigate the correlation between the regular wave-induced sloshing of different motions (surge, heave, and pitch) on the mixing behaviour of the novel offshore floating photobioreactor designed to utilize the ocean surface waves for the effects of mixing. To determine the residence time distribution (RTD) of the stagnant volume of the photobioreactor, dissolved solids were injected into the system. The concentration of dissolved solids was measured using a total dissolve solid (TDS) sensor. The mixing caused by sloshing motion had the highest intensity during pitching motion. A homogenous solution was formed just after 65.9 s for the filling ratio of 30 %, with the rotation angle of 8 degrees and frequency of 0.21 Hz. Thus, wave-induced sloshing is able to generate intense mixing to the medium during pitching motion but still has non-ideal behaviours, such as bypass and dead zones during horizontal and vertical motion. |
format |
Article |
author |
Khor, Wei Han Goh, Jie Heng Yew, Qi Ming Kang, Hooi-Siang Lim, Jun-Wei Iwamoto, Koji Tang, Collin Howe-Hing Lee, Kee-Quen Wu, Yun-Ta Goh, Pei Sean |
author_facet |
Khor, Wei Han Goh, Jie Heng Yew, Qi Ming Kang, Hooi-Siang Lim, Jun-Wei Iwamoto, Koji Tang, Collin Howe-Hing Lee, Kee-Quen Wu, Yun-Ta Goh, Pei Sean |
author_sort |
Khor, Wei Han |
title |
Residence time distribution of an offshore floating photobioreactor under hydrodynamic sloshing effect |
title_short |
Residence time distribution of an offshore floating photobioreactor under hydrodynamic sloshing effect |
title_full |
Residence time distribution of an offshore floating photobioreactor under hydrodynamic sloshing effect |
title_fullStr |
Residence time distribution of an offshore floating photobioreactor under hydrodynamic sloshing effect |
title_full_unstemmed |
Residence time distribution of an offshore floating photobioreactor under hydrodynamic sloshing effect |
title_sort |
residence time distribution of an offshore floating photobioreactor under hydrodynamic sloshing effect |
publisher |
Institution of Chemical Engineers |
publishDate |
2023 |
url |
http://eprints.utm.my/105923/ http://dx.doi.org/10.1016/j.cherd.2023.09.014 |
_version_ |
1800714776981012480 |
score |
13.211869 |