Linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: modeling, design and experimental validation
In this paper, linear quadratic regulator (LQR) controllers for effective operation of a hybrid energy system consisting of ultracapacitor energy storage and wind energy system have been designed and implemented. The control objective is to regulate the dc-bus voltage to a target level while extract...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier Ltd
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/104536/ http://dx.doi.org/10.1016/j.seta.2021.101880 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.104536 |
---|---|
record_format |
eprints |
spelling |
my.utm.1045362024-02-14T04:09:30Z http://eprints.utm.my/104536/ Linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: modeling, design and experimental validation Abdullah, Majid A. Al-Shetwi, Ali Q. Muhamad Mansor, Muhamad Mansor Hannan, M. A. Tan, Chee Wei Mohd. Yatim, Abdul Halim TK Electrical engineering. Electronics Nuclear engineering In this paper, linear quadratic regulator (LQR) controllers for effective operation of a hybrid energy system consisting of ultracapacitor energy storage and wind energy system have been designed and implemented. The control objective is to regulate the dc-bus voltage to a target level while extracting the maximum power from the available wind. The dc-bus voltage regulation is achieved by controlling the charging and discharging of the ultracapacitor through a bidirectional converter, and tracking the maximum power points (MPPs) is achieved by controlling a boost converter interfacing the wind turbine with the dc-bus. In addition, a boost converter-based wind turbine emulator to behavior similar to a real wind generator has been developed for testing the proposed controllers. The performance of the proposed energy system incorporating the LQR controllers has been tested under several scenarios (both in simulations and experiments), and the results presented. The simulation tests were conducted in the environment of MATLAB/Simulink, and the experimental tests implemented based on low-cost Digital Signal Processor (DSP) TMS320F2812 eZdsp board. The simulation and experimental results demonstrate their consistency and the capability of the proposed LQR controllers to (1) track the reference voltages and currents, and (2) swiftly recover the nominal operating condition of the system at all conditions including any variation in wind speed or load demand. Elsevier Ltd 2022-03 Article PeerReviewed Abdullah, Majid A. and Al-Shetwi, Ali Q. and Muhamad Mansor, Muhamad Mansor and Hannan, M. A. and Tan, Chee Wei and Mohd. Yatim, Abdul Halim (2022) Linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: modeling, design and experimental validation. Sustainable Energy Technologies and Assessments, 50 (NA). pp. 1-10. ISSN 2213-1388 http://dx.doi.org/10.1016/j.seta.2021.101880 DOI:10.1016/j.seta.2021.101880 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Abdullah, Majid A. Al-Shetwi, Ali Q. Muhamad Mansor, Muhamad Mansor Hannan, M. A. Tan, Chee Wei Mohd. Yatim, Abdul Halim Linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: modeling, design and experimental validation |
description |
In this paper, linear quadratic regulator (LQR) controllers for effective operation of a hybrid energy system consisting of ultracapacitor energy storage and wind energy system have been designed and implemented. The control objective is to regulate the dc-bus voltage to a target level while extracting the maximum power from the available wind. The dc-bus voltage regulation is achieved by controlling the charging and discharging of the ultracapacitor through a bidirectional converter, and tracking the maximum power points (MPPs) is achieved by controlling a boost converter interfacing the wind turbine with the dc-bus. In addition, a boost converter-based wind turbine emulator to behavior similar to a real wind generator has been developed for testing the proposed controllers. The performance of the proposed energy system incorporating the LQR controllers has been tested under several scenarios (both in simulations and experiments), and the results presented. The simulation tests were conducted in the environment of MATLAB/Simulink, and the experimental tests implemented based on low-cost Digital Signal Processor (DSP) TMS320F2812 eZdsp board. The simulation and experimental results demonstrate their consistency and the capability of the proposed LQR controllers to (1) track the reference voltages and currents, and (2) swiftly recover the nominal operating condition of the system at all conditions including any variation in wind speed or load demand. |
format |
Article |
author |
Abdullah, Majid A. Al-Shetwi, Ali Q. Muhamad Mansor, Muhamad Mansor Hannan, M. A. Tan, Chee Wei Mohd. Yatim, Abdul Halim |
author_facet |
Abdullah, Majid A. Al-Shetwi, Ali Q. Muhamad Mansor, Muhamad Mansor Hannan, M. A. Tan, Chee Wei Mohd. Yatim, Abdul Halim |
author_sort |
Abdullah, Majid A. |
title |
Linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: modeling, design and experimental validation |
title_short |
Linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: modeling, design and experimental validation |
title_full |
Linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: modeling, design and experimental validation |
title_fullStr |
Linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: modeling, design and experimental validation |
title_full_unstemmed |
Linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: modeling, design and experimental validation |
title_sort |
linear quadratic regulator controllers for regulation of the dc-bus voltage in a hybrid energy system: modeling, design and experimental validation |
publisher |
Elsevier Ltd |
publishDate |
2022 |
url |
http://eprints.utm.my/104536/ http://dx.doi.org/10.1016/j.seta.2021.101880 |
_version_ |
1792147802270203904 |
score |
13.211869 |