Controlled process of radiation-induced grafting by chemical vapour deposition for the synthesis of metal adsorbent
Combination of high energy radiation and chemical vapour deposition in the grafting process for the synthesis of metal adsorbent was investigated. Radiation-induced grafting of glycidyl methacrylate onto kenaf fiber was performed in vapour phase to develop adsorbent for removal of aluminum from aque...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/103823/ http://dx.doi.org/10.4028/p-6w14rh |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.103823 |
---|---|
record_format |
eprints |
spelling |
my.utm.1038232023-11-27T06:29:50Z http://eprints.utm.my/103823/ Controlled process of radiation-induced grafting by chemical vapour deposition for the synthesis of metal adsorbent Othman, Nor Azillah Fatimah Selambakkannu, Sarala Tuan Abdullah, Tuan Amran TP Chemical technology Combination of high energy radiation and chemical vapour deposition in the grafting process for the synthesis of metal adsorbent was investigated. Radiation-induced grafting of glycidyl methacrylate onto kenaf fiber was performed in vapour phase to develop adsorbent for removal of aluminum from aqueous solution. Morphological changes of cross-section kenaf fiber was observed via scanning electron microscope and the thickness of co-monomer in the final graft co-polymer was determined. The comparison in cross-section morphology between ungrafted kenaf fibers and grafted kenaf fiber shows approximately 3.88 [μm] thick of additional grafted layer. The functionalization of the grafted fiber using imidazole was calculated grametrically and verified by elemental analysis. Imidazole has proven to be effective on the adsorption of aluminum ion. It was found that the adsorbent could remove more than 99% aluminum with the highest adsorption capacity of 4.93 [mg/g] at pH 4 and 60 [min] reaction time. 2022 Conference or Workshop Item PeerReviewed Othman, Nor Azillah Fatimah and Selambakkannu, Sarala and Tuan Abdullah, Tuan Amran (2022) Controlled process of radiation-induced grafting by chemical vapour deposition for the synthesis of metal adsorbent. In: 10th International Conference on X-Rays and Related Techniques in Research and Industry, ICXRI 2021, 18 August 2021 - 19 August 2021, Virtual, Online. http://dx.doi.org/10.4028/p-6w14rh |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology Othman, Nor Azillah Fatimah Selambakkannu, Sarala Tuan Abdullah, Tuan Amran Controlled process of radiation-induced grafting by chemical vapour deposition for the synthesis of metal adsorbent |
description |
Combination of high energy radiation and chemical vapour deposition in the grafting process for the synthesis of metal adsorbent was investigated. Radiation-induced grafting of glycidyl methacrylate onto kenaf fiber was performed in vapour phase to develop adsorbent for removal of aluminum from aqueous solution. Morphological changes of cross-section kenaf fiber was observed via scanning electron microscope and the thickness of co-monomer in the final graft co-polymer was determined. The comparison in cross-section morphology between ungrafted kenaf fibers and grafted kenaf fiber shows approximately 3.88 [μm] thick of additional grafted layer. The functionalization of the grafted fiber using imidazole was calculated grametrically and verified by elemental analysis. Imidazole has proven to be effective on the adsorption of aluminum ion. It was found that the adsorbent could remove more than 99% aluminum with the highest adsorption capacity of 4.93 [mg/g] at pH 4 and 60 [min] reaction time. |
format |
Conference or Workshop Item |
author |
Othman, Nor Azillah Fatimah Selambakkannu, Sarala Tuan Abdullah, Tuan Amran |
author_facet |
Othman, Nor Azillah Fatimah Selambakkannu, Sarala Tuan Abdullah, Tuan Amran |
author_sort |
Othman, Nor Azillah Fatimah |
title |
Controlled process of radiation-induced grafting by chemical vapour deposition for the synthesis of metal adsorbent |
title_short |
Controlled process of radiation-induced grafting by chemical vapour deposition for the synthesis of metal adsorbent |
title_full |
Controlled process of radiation-induced grafting by chemical vapour deposition for the synthesis of metal adsorbent |
title_fullStr |
Controlled process of radiation-induced grafting by chemical vapour deposition for the synthesis of metal adsorbent |
title_full_unstemmed |
Controlled process of radiation-induced grafting by chemical vapour deposition for the synthesis of metal adsorbent |
title_sort |
controlled process of radiation-induced grafting by chemical vapour deposition for the synthesis of metal adsorbent |
publishDate |
2022 |
url |
http://eprints.utm.my/103823/ http://dx.doi.org/10.4028/p-6w14rh |
_version_ |
1783876420724850688 |
score |
13.211869 |