Flux increase occurring when an ultrafiltration membrane is flipped from a normal to an inverted position—experiments and theory

The effects of flipping membranes with hydrophilic/hydrophobic asymmetry are well documented in the literature, but not much is known on the impact of flipping a membrane with dense/porous layer asymmetry. In this work, the pure water flux (PWF) of a commercial polyethersulfone (PES) membrane and a...

Full description

Saved in:
Bibliographic Details
Main Authors: Zoka, Ladan, Khoo, Ying Siew, Lau, Woei Jye, Matsuura, Takeshi, Narbaitz, Roberto, Ismail, Ahmad Fauzi
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:http://eprints.utm.my/103169/1/LauWoeiJye2022_FluxIncreaseOccurringWhenanUltrafiltration.pdf
http://eprints.utm.my/103169/
http://dx.doi.org/10.3390/membranes12020129
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of flipping membranes with hydrophilic/hydrophobic asymmetry are well documented in the literature, but not much is known on the impact of flipping a membrane with dense/porous layer asymmetry. In this work, the pure water flux (PWF) of a commercial polyethersulfone (PES) membrane and a ceramic ultrafiltration (UF) membrane was measured in the normal and inverted positions. Our experimental results showed that the PWF was two orders of magnitude higher when the PES membrane was flipped to the inverted position, while the increase was only two times for the ceramic membrane. The filtration experiments were also carried out using solutions of bovine serum albumin and poly(vinylpyrrolidone). A mathematical model was further developed to explain the PWF increase in the inverted position based on the Bernoulli’s rule, considering a straight cylindrical pore of small radius connected to a pore of larger radius in series. It was found by simulation that a PWF increase was indeed possible when the solid ceramic membrane was flipped, maintaining its pore geometry. The flow from a layer with larger pore size to a layer with smaller pore size occurred in the backwashing of the fouled membrane and in forward and pressure-retarded osmosis when the membrane was used with its active layer facing the draw solution (AL-DS). Therefore, this work is of practical significance for the cases where the direction of the water flow is in the inverted position of the membrane.