Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy model
Reliable modeling of river sediments transport is important as it is a defining factor of the economic viability of dams, the durability of hydroelectric-equipment, river susceptibility to pollution, suitability for navigation, and potential for aesthetics and fish habitat. The capability of a new m...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier B.V.
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/101401/1/ShamsuddinShahid2022_PredictabilityPerformanceEnhancement.pdf http://eprints.utm.my/id/eprint/101401/ http://dx.doi.org/10.1016/j.ijsrc.2021.10.001 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.101401 |
---|---|
record_format |
eprints |
spelling |
my.utm.1014012023-06-14T10:03:10Z http://eprints.utm.my/id/eprint/101401/ Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy model Muhammad Adnan, Rana Yaseen, Zaher Mundher Heddam, Salim Shahid, Shamsuddin Sadeghi-Niaraki, Aboalghasem Kisi, Ozgur TA Engineering (General). Civil engineering (General) Reliable modeling of river sediments transport is important as it is a defining factor of the economic viability of dams, the durability of hydroelectric-equipment, river susceptibility to pollution, suitability for navigation, and potential for aesthetics and fish habitat. The capability of a new machine learning model, fuzzy c-means based neuro-fuzzy system calibrated using the hybrid particle swarm optimization-gravitational search algorithm (ANFIS-FCM-PSOGSA) in improving the estimation accuracy of river suspended sediment loads (SSLs) is investigated in the current study. The outcomes of the proposed method were compared with those obtained using the fuzzy c-means based neuro-fuzzy system calibrated using particle swarm optimization (ANFIS-FCM-PSO), ANFIS-FCM, and sediment rating curve (SRC) models. Various input combinations involving lagged river flow (Q) and suspended sediment (S) values were used for model development. The effect of Q and S on the model's accuracy also was assessed by including the difference between lagged Q and S values as inputs. The model performance was assessed using the root mean square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe Efficiency (NSE), and coefficient of determination (R2) and several graphical comparison methods. The results showed that the proposed model enhanced the prediction performance of the ANFIS-FCM-PSO (or ANFIS-FCM) models by 8.14% (1.72%), 14.7% (5.71%), 12.5% (2.27%), and 25.6% (1.86%), in terms of the RMSE, MAE, NSE and R2, respectively. The current study established the potential of the proposed ANFIS-FCM-PSOGSA model for simulation of the cumulative sediment load. The modeling results revealed the potential effects of the river flow lags on the sediment transport quantification. Elsevier B.V. 2022 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/101401/1/ShamsuddinShahid2022_PredictabilityPerformanceEnhancement.pdf Muhammad Adnan, Rana and Yaseen, Zaher Mundher and Heddam, Salim and Shahid, Shamsuddin and Sadeghi-Niaraki, Aboalghasem and Kisi, Ozgur (2022) Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy model. International Journal of Sediment Research, 37 (3). pp. 383-398. ISSN 1001-6279 http://dx.doi.org/10.1016/j.ijsrc.2021.10.001 DOI: 10.1016/j.ijsrc.2021.10.001 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
TA Engineering (General). Civil engineering (General) |
spellingShingle |
TA Engineering (General). Civil engineering (General) Muhammad Adnan, Rana Yaseen, Zaher Mundher Heddam, Salim Shahid, Shamsuddin Sadeghi-Niaraki, Aboalghasem Kisi, Ozgur Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy model |
description |
Reliable modeling of river sediments transport is important as it is a defining factor of the economic viability of dams, the durability of hydroelectric-equipment, river susceptibility to pollution, suitability for navigation, and potential for aesthetics and fish habitat. The capability of a new machine learning model, fuzzy c-means based neuro-fuzzy system calibrated using the hybrid particle swarm optimization-gravitational search algorithm (ANFIS-FCM-PSOGSA) in improving the estimation accuracy of river suspended sediment loads (SSLs) is investigated in the current study. The outcomes of the proposed method were compared with those obtained using the fuzzy c-means based neuro-fuzzy system calibrated using particle swarm optimization (ANFIS-FCM-PSO), ANFIS-FCM, and sediment rating curve (SRC) models. Various input combinations involving lagged river flow (Q) and suspended sediment (S) values were used for model development. The effect of Q and S on the model's accuracy also was assessed by including the difference between lagged Q and S values as inputs. The model performance was assessed using the root mean square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe Efficiency (NSE), and coefficient of determination (R2) and several graphical comparison methods. The results showed that the proposed model enhanced the prediction performance of the ANFIS-FCM-PSO (or ANFIS-FCM) models by 8.14% (1.72%), 14.7% (5.71%), 12.5% (2.27%), and 25.6% (1.86%), in terms of the RMSE, MAE, NSE and R2, respectively. The current study established the potential of the proposed ANFIS-FCM-PSOGSA model for simulation of the cumulative sediment load. The modeling results revealed the potential effects of the river flow lags on the sediment transport quantification. |
format |
Article |
author |
Muhammad Adnan, Rana Yaseen, Zaher Mundher Heddam, Salim Shahid, Shamsuddin Sadeghi-Niaraki, Aboalghasem Kisi, Ozgur |
author_facet |
Muhammad Adnan, Rana Yaseen, Zaher Mundher Heddam, Salim Shahid, Shamsuddin Sadeghi-Niaraki, Aboalghasem Kisi, Ozgur |
author_sort |
Muhammad Adnan, Rana |
title |
Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy model |
title_short |
Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy model |
title_full |
Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy model |
title_fullStr |
Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy model |
title_full_unstemmed |
Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy model |
title_sort |
predictability performance enhancement for suspended sediment in rivers: inspection of newly developed hybrid adaptive neuro-fuzzy model |
publisher |
Elsevier B.V. |
publishDate |
2022 |
url |
http://eprints.utm.my/id/eprint/101401/1/ShamsuddinShahid2022_PredictabilityPerformanceEnhancement.pdf http://eprints.utm.my/id/eprint/101401/ http://dx.doi.org/10.1016/j.ijsrc.2021.10.001 |
_version_ |
1769842049763246080 |
score |
13.211869 |