Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing

This study fabricated tantalum (Ta)-doped titanium dioxide with a unique nanorodassembled actinomorphic-flower-like microsphere structured film. The Ta-doped TiO2 actinomorphicflower-like microsphere (TAFM) was fabricated via the solution immersion method in a Schott bottle with a home-made improvis...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohamed Zahidi, Musa, Mamat, Mohamad Hafiz, A Subki, A Shamsul Rahimi, Abdullah, Mohd Hanapiah, Hassan, Hamizura, Ahmad, Mohd Khairul, Abu Bakar, Suriani, Mohamed, Azmi, Ohtani, Bunsho
Format: Article
Language:English
Published: Mdpi
Subjects:
Online Access:http://eprints.uthm.edu.my/8803/1/J15823_9762ac0f5e599b24ddb1cf260afb8c25.pdf
http://eprints.uthm.edu.my/8803/
https://doi.org/10.3390/nano13020256
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uthm.eprints.8803
record_format eprints
spelling my.uthm.eprints.88032023-06-14T00:35:14Z http://eprints.uthm.edu.my/8803/ Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing Mohamed Zahidi, Musa Mamat, Mohamad Hafiz A Subki, A Shamsul Rahimi Abdullah, Mohd Hanapiah Hassan, Hamizura Ahmad, Mohd Khairul Abu Bakar, Suriani Mohamed, Azmi Ohtani, Bunsho TA174 Engineering design This study fabricated tantalum (Ta)-doped titanium dioxide with a unique nanorodassembled actinomorphic-flower-like microsphere structured film. The Ta-doped TiO2 actinomorphicflower-like microsphere (TAFM) was fabricated via the solution immersion method in a Schott bottle with a home-made improvised clamp. The samples were characterised using FESEM, HRTEM, XRD, Raman, XPS, and Hall effect measurements for their structural and electrical properties. Compared to the undoped sample, the rutile-phased TAFM sample had finer nanorods with an average 42 nm diameter assembled to form microsphere-like structures. It also had higher oxygen vacancy sites, electron concentration, and mobility. In addition, a reversed double-beam photoacoustic spectroscopy measurement was performed for TAFM, revealing that the sample had a high electron trap density of up to 2.5 µmolg1. The TAFM showed promising results when employed as the resistive-type sensing film for a humidity sensor, with the highest sensor response of 53,909% obtained at 3 at.% Ta doping. Adding rGO to 3 at.% TAFM further improved the sensor response to 232,152% Mdpi Article PeerReviewed text en http://eprints.uthm.edu.my/8803/1/J15823_9762ac0f5e599b24ddb1cf260afb8c25.pdf Mohamed Zahidi, Musa and Mamat, Mohamad Hafiz and A Subki, A Shamsul Rahimi and Abdullah, Mohd Hanapiah and Hassan, Hamizura and Ahmad, Mohd Khairul and Abu Bakar, Suriani and Mohamed, Azmi and Ohtani, Bunsho Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing. Nanomaterials, 13 (2). https://doi.org/10.3390/nano13020256
institution Universiti Tun Hussein Onn Malaysia
building UTHM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tun Hussein Onn Malaysia
content_source UTHM Institutional Repository
url_provider http://eprints.uthm.edu.my/
language English
topic TA174 Engineering design
spellingShingle TA174 Engineering design
Mohamed Zahidi, Musa
Mamat, Mohamad Hafiz
A Subki, A Shamsul Rahimi
Abdullah, Mohd Hanapiah
Hassan, Hamizura
Ahmad, Mohd Khairul
Abu Bakar, Suriani
Mohamed, Azmi
Ohtani, Bunsho
Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing
description This study fabricated tantalum (Ta)-doped titanium dioxide with a unique nanorodassembled actinomorphic-flower-like microsphere structured film. The Ta-doped TiO2 actinomorphicflower-like microsphere (TAFM) was fabricated via the solution immersion method in a Schott bottle with a home-made improvised clamp. The samples were characterised using FESEM, HRTEM, XRD, Raman, XPS, and Hall effect measurements for their structural and electrical properties. Compared to the undoped sample, the rutile-phased TAFM sample had finer nanorods with an average 42 nm diameter assembled to form microsphere-like structures. It also had higher oxygen vacancy sites, electron concentration, and mobility. In addition, a reversed double-beam photoacoustic spectroscopy measurement was performed for TAFM, revealing that the sample had a high electron trap density of up to 2.5 µmolg1. The TAFM showed promising results when employed as the resistive-type sensing film for a humidity sensor, with the highest sensor response of 53,909% obtained at 3 at.% Ta doping. Adding rGO to 3 at.% TAFM further improved the sensor response to 232,152%
format Article
author Mohamed Zahidi, Musa
Mamat, Mohamad Hafiz
A Subki, A Shamsul Rahimi
Abdullah, Mohd Hanapiah
Hassan, Hamizura
Ahmad, Mohd Khairul
Abu Bakar, Suriani
Mohamed, Azmi
Ohtani, Bunsho
author_facet Mohamed Zahidi, Musa
Mamat, Mohamad Hafiz
A Subki, A Shamsul Rahimi
Abdullah, Mohd Hanapiah
Hassan, Hamizura
Ahmad, Mohd Khairul
Abu Bakar, Suriani
Mohamed, Azmi
Ohtani, Bunsho
author_sort Mohamed Zahidi, Musa
title Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing
title_short Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing
title_full Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing
title_fullStr Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing
title_full_unstemmed Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing
title_sort formation of a nanorod-assembled tio2 actinomorphicflower-like microsphere film via ta doping using a facile solution immersion method for humidity sensing
publisher Mdpi
url http://eprints.uthm.edu.my/8803/1/J15823_9762ac0f5e599b24ddb1cf260afb8c25.pdf
http://eprints.uthm.edu.my/8803/
https://doi.org/10.3390/nano13020256
_version_ 1769845096868478976
score 13.211869