An improved framework for content-based spamdexing detection

To the modern Search Engines (SEs), one of the biggest threats to be considered is spamdexing. Nowadays spammers are using a wide range of techniques for content generation, they are using content spam to fill the Search Engine Result Pages (SERPs) with low-quality web pages. Generally, spam web pag...

Full description

Saved in:
Bibliographic Details
Main Authors: Shahzad, Asim, Mahdin, Hairulnizam, Mohd Nawi, Nazri
Format: Article
Language:English
Published: SAI Organization 2020
Subjects:
Online Access:http://eprints.uthm.edu.my/5278/1/AJ%202020%20%28137%29.pdf
http://eprints.uthm.edu.my/5278/
https://dx.doi.org/ 10.14569/IJACSA.2020.0110151
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To the modern Search Engines (SEs), one of the biggest threats to be considered is spamdexing. Nowadays spammers are using a wide range of techniques for content generation, they are using content spam to fill the Search Engine Result Pages (SERPs) with low-quality web pages. Generally, spam web pages are insufficient, irrelevant and improper results for users. Many researchers from academia and industry are working on spamdexing to identify the spam web pages. However, so far not even a single universally efficient method is developed for identification of all spam web pages. We believe that for tackling the content spam there must be improved methods. This article is an attempt in that direction, where a framework has been proposed for spam web pages identification. The framework uses Stop words, Keywords Density, Spam Keywords Database, Part of Speech (POS) ratio, and Copied Content algorithms. For conducting the experiments and obtaining threshold values WEBSPAM-UK2006 and WEBSPAM-UK2007 datasets have been used. An excellent and promising F-measure of 77.38% illustrates the effectiveness and applicability of proposed method.