Aerated blast furnace slag filters for enhanced nitrogen and phosphorus removal from small wastewater treatment plants
Rock filters (RF) are a promising alternative technology for natural wastewater treatment for upgrading WSP effluent. However, the application of RF in the removal of eutrophic nutrients, nitrogen and phosphorus, is very limited. Accordingly, the overall objective of this study was to develop a l...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | http://eprints.uthm.edu.my/3685/1/24p%20RAFIDAH%20HAMDAN.pdf http://eprints.uthm.edu.my/3685/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rock filters (RF) are a promising alternative technology for natural
wastewater treatment for upgrading WSP effluent. However, the application
of RF in the removal of eutrophic nutrients, nitrogen and phosphorus, is very
limited. Accordingly, the overall objective of this study was to develop a lowcost
RF system for the purpose of enhanced nutrient removal from WSP
effluents, which would be able to produce effluents which comply with the
requirements of the EU Urban Waste Water Treatment Directive (UWWTD)
(911271lEEC) and suitable for small communities. Therefore, a combination
system comprising a primary facultative pond and an aerated rock filter
(ARF) system-either vertically or horizontally loaded-was investigated at
the University of Leeds' experimental station at Esholt Wastewater
Treatment Works, Bradford, UK.
Blast furnace slag (BFS) and limestone were selected for use in the ARF
system owing to their high potential for P removal and their low cost. This
study involved three major qperiments: (1) a comparison of aerated
vertical-flow and horizontal-flow limestone filters for nitrogen removal; (2) a
comparison of aerated limestone + blast furnace slag (BFS) filter and
aerated BFS filters for nitrogen and phosphorus removal; and (3) a
comparison of vertical-flow and horizontal-flow BFS filters for nitrogen and
phosphorus removal.
The vertical upward-flow ARF system was found to be superior to the
horizontal-flow ARF system in terms of nitrogen removal, mostly thiough
bacterial nitrification processes in both the aerated limestone and BFS filter
studies. The BFS filter medium (whieh is low-cost) showed a much higher
potential in removing phosphortls from pond effluent than the limestone
medium. As a result, the combination of a vertical upward-flow ARF system
and an economical and effective P-removal filter medium, such as BFS,
was found to be an ideal optionfor the total nutrient removal of both nitrogen
and phosphorus from wastewater.
In parallel with these experiments, studies on the aerated BFS filter effective
life and major in-filter phosphorus removal pathways were carried out. From
the standard batch experiments of Pmax adsorption capacity of BFS, as well
as six-month data collection of daily average P-removal, it was found that
the effective life of the aerated BFS filter was 6.5 years. Scanning electron
microscopy and X-ray diffraction spectrometric analyses on the surface of
BFS, particulates and sediment samples revealed that the apparent
mechanisms of P-removal in the filter are adsorption on the amorphous
oxide phase of the BFS surface and precipitation within the filter. |
---|