New modification of the hestenes-stiefel with strong wolfe line search

. The method of the nonlinear conjugate gradient is widely used in solving large-scale unconstrained optimization since been proven in solving optimization problems without using large memory storage. In this paper, we proposed a new modification of the Hestenes-Stiefel conjugate gradient parameter...

詳細記述

保存先:
書誌詳細
主要な著者: Japri, Nur Athira, Basri, Srimazzura, Mamat, Mustafa
フォーマット: Conference or Workshop Item
言語:English
出版事項: 2021
主題:
オンライン・アクセス:http://eprints.uthm.edu.my/2643/1/P12682_fab91575b27daa5c82a8d41786ab381e.pdf
http://eprints.uthm.edu.my/2643/
https://doi.org/10.1063/5.0053211 Published
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:. The method of the nonlinear conjugate gradient is widely used in solving large-scale unconstrained optimization since been proven in solving optimization problems without using large memory storage. In this paper, we proposed a new modification of the Hestenes-Stiefel conjugate gradient parameter that fulfils the condition of sufficient descent using a strong Wolfe-Powell line search. Besides, the conjugate gradient method with the proposed conjugate gradient also guarantees low computation of iteration and CPU time by comparing with other classical conjugate gradient parameters. Numerical results have shown that the conjugate gradient method with the proposed conjugate gradient parameter performed better than the conjugate gradient method with other classical conjugate gradient parameters.