Integrating Taguchi Method and Support Vector Machine for Enhanced Surface Roughness Modeling and Optimization
—End milling process is widely used in various industrial applications, including health, aerospace and manufacturing industries. Over the years, machine technology of end milling has grown exponentially to attain the needs of various fields especially in manufacturing industry. The main concern of...
Saved in:
Main Authors: | Mat Deris, Ashanira, Ali, Rozniza, Ahmad Sabri, Ily Amalina, Zainal, Nurezayana |
---|---|
格式: | Article |
语言: | English |
出版: |
ijacsa
2024
|
主题: | |
在线阅读: | http://eprints.uthm.edu.my/11874/1/J17506_2cb6e65dff7bb76453771737108ea341.pdf http://eprints.uthm.edu.my/11874/ |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Hybrid grey relational analysis-support vector machine (GR-SVM) in predicting machining surface roughness
由: Mat Deris, Ashanira
出版: (2013) -
Overview of support vector machine in modeling machining performances
由: Mat Deris, Ashanira, et al.
出版: (2011) -
Multiple Polynomial Regression Model for Predicting Surface Roughness of Titanium Alloy in Electrical Discharge Machining
由: Zaina, Nurezayana, et al.
出版: (2024) -
Hybrid taguchi glowworm optimization algorithm for optimization of cutting parameters
由: Zainal, Nurezayana
出版: (2014) -
An enhancement of integrated fuzzy-topsis to improve machining surface roughness
由: Mohd. Adnan, Mohd. Ridhwan Hilmi
出版: (2014)