Predicting hearing loss symptoms from Audiometry data using FP-Growth Algorithm and Bayesian Classifier
This paper presents the results of applying machine learning algorithms to predict hearing loss symptoms given air and bone conduction audiometry thresholds. FP-Growth (frequent pattern growth) algorithm was employed as a feature extraction technique. The effect of extracting naïve Bayes classifier’...
保存先:
主要な著者: | G. Noma, Nasir, Mohd Khanapi, Abd Ghani, Mohamad Khir , Abdullah, Noorizan , Yahya |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
2013
|
主題: | |
オンライン・アクセス: | http://eprints.utem.edu.my/id/eprint/9888/1/NasirNoma-MKAG-AJBAS.pdf http://eprints.utem.edu.my/id/eprint/9888/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Identifying Relationship between Hearing loss Symptoms and Pure-tone Audiometry Thresholds with FP-Growth Algorithm
著者:: G. Noma, Nasir, 等
出版事項: (2013) -
Discovering Pattern in Medical Audiology
Data with FP-Growth Algorithm
著者:: G. Noma, Nasir, 等
出版事項: (2012) -
Identification model for hearing loss symptoms using machine learning techniques
著者:: Nasiru Garba Noma
出版事項: (2014) -
Hearing Threshold in Audiometry Testing: Pure Tone Versus Warble Tone.
著者:: Md Zakaria, Nur Annisa Rohaya, 等
出版事項: (2021) -
Detection of high-frequency hearing loss among hospital staffs exposed to occupational noise using extended pure tone audiometry
著者:: Umbaik, Norsyamira Aida Mohamad
出版事項: (2019)