Predicting hearing loss symptoms from Audiometry data using FP-Growth Algorithm and Bayesian Classifier
This paper presents the results of applying machine learning algorithms to predict hearing loss symptoms given air and bone conduction audiometry thresholds. FP-Growth (frequent pattern growth) algorithm was employed as a feature extraction technique. The effect of extracting naïve Bayes classifier’...
Saved in:
Main Authors: | G. Noma, Nasir, Mohd Khanapi, Abd Ghani, Mohamad Khir , Abdullah, Noorizan , Yahya |
---|---|
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | http://eprints.utem.edu.my/id/eprint/9888/1/NasirNoma-MKAG-AJBAS.pdf http://eprints.utem.edu.my/id/eprint/9888/ |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Identifying Relationship between Hearing loss Symptoms and Pure-tone Audiometry Thresholds with FP-Growth Algorithm
由: G. Noma, Nasir, et al.
出版: (2013) -
Discovering Pattern in Medical Audiology
Data with FP-Growth Algorithm
由: G. Noma, Nasir, et al.
出版: (2012) -
Identification model for hearing loss symptoms using machine learning techniques
由: Nasiru Garba Noma
出版: (2014) -
Hearing Threshold in Audiometry Testing: Pure Tone Versus Warble Tone.
由: Md Zakaria, Nur Annisa Rohaya, et al.
出版: (2021) -
Detection of high-frequency hearing loss among hospital staffs exposed to occupational noise using extended pure tone audiometry
由: Umbaik, Norsyamira Aida Mohamad
出版: (2019)