Optimal cooperative MIMO scheme in wireless sensor networks
Cooperative Multiple-Input Multiple-Output (MIMO) has been proposed as a transmission strategy to combat the fading problem in Wireless Sensor Networks (WSNs) to reduce the retransmission probability and lower the transmission energy. Among the earliest work on cooperative MIMO in WSNs is the analys...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Book Chapter |
Language: | English |
Published: |
INTECH
2010
|
Subjects: | |
Online Access: | http://eprints.utem.edu.my/id/eprint/3805/2/InTech-Optimal_cooperative_mimo_scheme_in_wireless_sensor_networks.pdf http://eprints.utem.edu.my/id/eprint/3805/ http://www.intechopen.com/books/radio-communications |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cooperative Multiple-Input Multiple-Output (MIMO) has been proposed as a transmission strategy to combat the fading problem in Wireless Sensor Networks (WSNs) to reduce the retransmission probability and lower the transmission energy. Among the earliest work on cooperative MIMO in WSNs is the analysis of the Space-Time Block Coding (STBC) scheme to achieve lower Bit Error Rate (BER) and significant energy savings. The work is continued with the implementation of the Low-Energy Adaptive Clustering Hierarchy (LEACH) Medium Access Control (MAC) protocol for clustered-based architectures. The combination of STBC and the LEACH scheme resulted in a significant improvement in transmission energy efficiency compared to the Single-Input Single Output (SISO) scheme. Further study is conducted to compare the performance of STBC and various Spatial Multiplexing (SM) schemes such as Vertical Bell Labs Layered Space-Time (V-BLAST) and Diagonal BLAST. In this study, LEACH MAC was also utilized and lower transmission
energy and latency were achieved against the SISO scheme. However, the centralized architecture leads to energy wastage and higher latency compared to a distributed architecture. On the other hand, the implementation of a distributed architecture needs to consider synchronisation issues. Thus a practical cooperative MIMO scheme for distributed asynchronous WSNs is needed. Moreover, a practical MAC that can suit cooperative transmission is required. A combination of a practical MAC protocol and an efficient MIMO scheme for asynchronous cooperative transmission leads to a more energy efficient and lower latency cooperative MIMO system. A combination of a MAC protocol and a cooperative SM scheme for cooperative MIMO transmission has been proposed in previous study where the combined scheme achieves significant energy efficiency and lower latency. Furthermore, a transmit Maximum Ratio Combiner (MRC) scheme is suggested to be more tolerant to the jitter difference than the Alamouti STC scheme in network with imperfect transmitting nodes synchronisation. In this chapter, we expand these studies to two other cooperative MIMO schemes, namely Beamforming (BF) and STBC for both network scenarios: perfect and imperfect transmitting nodes synchronisation. The optimal cooperative MIMO scheme combined with an appropriate MAC protocol should lead to the lowest energy consumption and lowest packet latency. |
---|